数据驱动的故障诊断与最优控制系统一体化设计方法

    公开(公告)号:CN111158351B

    公开(公告)日:2021-06-01

    申请号:CN202010059726.8

    申请日:2020-01-19

    Abstract: 一种数据驱动的故障诊断与最优控制系统一体化设计方法,属于工业过程监测、故障诊断和控制领域。本发明针对现有生产过程的故障诊断和控制存在设置冗余,不能及时共享重要及具有时效性信息的问题。包括:采用镇定控制器对实际工业生产系统进行控制,获得补充控制信号及增加前馈控制器进一步参与到对所述实际工业生产系统的控制中;采集实际工业生产系统的输出信号与预设的输出预期信号作差获得输出误差,镇定控制器对输出误差进行处理获得主控制信号;采用前馈控制器对输出预期信号进行处理获得辅助控制信号;主控制信号与辅助控制信号及补充控制信号相加后获得输入信号输入到实际工业生产系统中。本发明确保了数据在整个系统中的及时性及时效性。

    一种基于深度学习神经网络的喉部疾病诊断系统

    公开(公告)号:CN111488912B

    公开(公告)日:2020-12-11

    申请号:CN202010183501.3

    申请日:2020-03-16

    Abstract: 一种基于深度学习神经网络的喉部疾病诊断系统,它属于人工智能与医疗诊断相结合的学科交叉领域。本发明解决了传统方法对喉镜图像的诊断效率以及诊断准确率低的问题。本发明搭建了喉部疾病诊断网络模型,搭建的喉部疾病诊断网络模型可以用于喉部疾病诊断的智能系统,从而更好地对喉镜图像进行诊断,帮助医生提升疾病的诊断效率和诊断准确率,降低漏诊和误诊率。本发明可以应用于喉镜图像的智能化检测。

    基于全局信息卷积神经网络的视网膜血管图像分割系统

    公开(公告)号:CN111598894A

    公开(公告)日:2020-08-28

    申请号:CN202010309418.6

    申请日:2020-04-17

    Abstract: 基于全局信息卷积神经网络的视网膜血管图像分割系统。本发明涉及视网膜血管图像分割系统,本发明为了解决现有卷积神经网络视网膜血管图像分割中全局信息利用有限、重要特征易丢失的问题。本发明所述系统包括:图像处理主模块、神经网络主模块、训练主模块和检测主模块;所述图像处理主模块用于采集原始视网膜图像,对采集的原始视网膜图像进行预处理,将处理后的图像输入训练主模块和检测主模块;所述神经网络主模块用于建立能够提取全局信息并强化特征的卷积神经网络;所述训练主模块用于初始化网络参数,获得训练好的卷积神经网络模型;所述检测主模块用于利用训练好的模型进行测试,计算模型性能指标。本发明属于视网膜血管图像分割系统领域。

    基于多类型图像融合神经网络地方性氟骨病分级诊断系统

    公开(公告)号:CN111598893A

    公开(公告)日:2020-08-28

    申请号:CN202010307115.0

    申请日:2020-04-17

    Abstract: 基于多类型图像融合神经网络地方性氟骨病分级诊断系统,涉及图像处理技术领域,针对现有技术中针对氟骨病的诊断效率低的问题,包括:预处理模块、病变区域图像粗分割模块、多类型图像融合模块和疾病分级诊断模块,本发明基于粗分割特征图与原始图像融合的多分类模型充分利用了病变区域信息,在保证信息完整性的基础上强化了神经网络对敏感区域的认知能力。本发明设计的代价函数强调特征图病变概率高的位置并削弱无关背景的影响,解决了病变区域占总图像面积比例较小的问题,提高了模型的训练和分类效率。本发明为氟骨病检测提供了辅助手段,填补了氟骨病智能诊断的空白,提高了针对氟骨病的诊断效率。

    一种基于深度学习神经网络的喉部疾病诊断系统

    公开(公告)号:CN111488912A

    公开(公告)日:2020-08-04

    申请号:CN202010183501.3

    申请日:2020-03-16

    Abstract: 一种基于深度学习神经网络的喉部疾病诊断系统,它属于人工智能与医疗诊断相结合的学科交叉领域。本发明解决了传统方法对喉镜图像的诊断效率以及诊断准确率低的问题。本发明搭建了喉部疾病诊断网络模型,搭建的喉部疾病诊断网络模型可以用于喉部疾病诊断的智能系统,从而更好地对喉镜图像进行诊断,帮助医生提升疾病的诊断效率和诊断准确率,降低漏诊和误诊率。本发明可以应用于喉镜图像的智能化检测。

Patent Agency Ranking