-
公开(公告)号:CN109886871B
公开(公告)日:2023-04-07
申请号:CN201910014480.X
申请日:2019-01-07
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06T3/40
Abstract: 本发明涉及一种基于通道注意力机制和多层特征融合的图像超分辨率方法,在残差支路开头,使用基于深度学习的单层卷积层直接提取低分辨率图像的原始特征;使用六个级联的基于通道注意力机制和多层特征融合的卷积循环单元来提取精确的深度特征;通过反卷积层对深度特征进行上采样,并且使用单层卷积层对上采样的特征进行降维,得到高分辨率图像的残差;在映射支路,使用双三次插值方法对低分辨图像进行上采样,得到高分辨率图像的映射;将高分辨率图像的映射和残差逐像素相加得到最终的高分辨率图像。本发明设计合理,充分考虑了特征通道间的差异性,高效地利用了层次化的特征,在取得较高准确率的同时,保持了较快的运行速度。
-
公开(公告)号:CN113159173A
公开(公告)日:2021-07-23
申请号:CN202110427314.X
申请日:2021-04-20
Applicant: 北京邮电大学
Abstract: 本发明涉及一种结合剪枝与知识蒸馏的卷积神经网络模型压缩方法。该方法包括:获取图像训练集A;获取目标网络模型,对其包含的每个通道引入缩放因子γ;对目标网络模型进行训练,将训练后的模型作为教师网络;按照缩放因子γ的绝对值大小对教师网络的通道数剪枝,将剪枝后的模型视为学生网络;获取图像训练集A中少量图像,同时输入教师、学生网络,分别计算教师、学生网络各卷积层通道输出的特征图之间的分布差异;将分布差异作为损失函数,对学生网络进行训练,使其模型精度快速恢复至教师网络的水平;输出训练后的学生网络。本发明具有压缩率高、快速恢复压缩模型精度的优势,从而便于网络模型在终端设备上的部署。
-
公开(公告)号:CN113158584A
公开(公告)日:2021-07-23
申请号:CN202110566230.4
申请日:2021-05-24
Applicant: 北京邮电大学
Abstract: 本发明提出了多模态特征嵌入预训练网络搭配效果评估的上界替代法,属于计算机视觉多模态技术领域。本发明提出的方法包括步骤:1)将所有模态特征嵌入预训练网络所提取到的特征进行遍历搭配;2)对得到的所有的搭配情况,对任务网络按照正式训练时提前设定好的参数,利用测试集部分进行训练;3)、对得到的每种搭配对应的模型,对其在测试集上进行测试,记录每一种搭配所对应的测试结果;4)、对所对应的每一种测试结果,选择效果最好的结果对应的模态特征嵌入预训练网络搭配;5)、对选出的网络搭配,将任务模型在这种搭配下所对应的训练集的特征下进行训练,训练得到的模型就是最优的模型。
-
公开(公告)号:CN112465727A
公开(公告)日:2021-03-09
申请号:CN202011439065.8
申请日:2020-12-07
Applicant: 北京邮电大学
Abstract: 本发明设计了一种基于HSV色彩空间和Retinex理论的无正常曝光图像参考的低照度图像增强方法,属于计算机视觉图像技术领域。针对于无正常曝光图像参考的低照度增强任务,本发明将其分解为颜色保留任务和亮度增强任务。对于颜色保留任务,本发明通过HSV色彩空间分离出颜色信息,并保留到增强后的图像上。对于亮度增强任务,本发明通过对分离出的亮度信息进行扰动,得到同一场景的不同光照水平的图像对,通过Retinex理论中的反射一致性约束得到反射分量,并将反射分量作为亮度增强的结果。实验表明,本发明可以有效地增强低照度图像,并在各个数据集和不同光照程度的低照度图像上有很强的泛化能力。
-
公开(公告)号:CN109886871A
公开(公告)日:2019-06-14
申请号:CN201910014480.X
申请日:2019-01-07
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06T3/40
Abstract: 本发明涉及一种基于通道注意力机制和多层特征融合的图像超分辨率方法,在残差支路开头,使用基于深度学习的单层卷积层直接提取低分辨率图像的原始特征;使用六个级联的基于通道注意力机制和多层特征融合的卷积循环单元来提取精确的深度特征;通过反卷积层对深度特征进行上采样,并且使用单层卷积层对上采样的特征进行降维,得到高分辨率图像的残差;在映射支路,使用双三次插值方法对低分辨图像进行上采样,得到高分辨率图像的映射;将高分辨率图像的映射和残差逐像素相加得到最终的高分辨率图像。本发明设计合理,充分考虑了特征通道间的差异性,高效地利用了层次化的特征,在取得较高准确率的同时,保持了较快的运行速度。
-
公开(公告)号:CN109190626A
公开(公告)日:2019-01-11
申请号:CN201810842201.4
申请日:2018-07-27
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于深度学习的多路径特征融合的语义分割方法,包括以下步骤:使用多路径特征融合方法提取图像的基础深度特征;将提取的基础深度特征经过解码端网络,恢复原始图像分辨率信息,并生成分割结果;以交叉熵损失函数为目标训练网络,使用准确率和mIoU评价网络性能。本发明设计合理,其充分考虑了局部信息以及全局信息,在网络中的特征提取端和分类端添加了很多条路径,网络的输出是与原图像分辨率大小一致的分割图,使用图像已有的标签计算分割准确率,以最小化交叉熵损失函数为目标来训练网络,有效地提高了图像语义分割地准确率。
-
公开(公告)号:CN108960141A
公开(公告)日:2018-12-07
申请号:CN201810721706.5
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/00362 , G06K9/6247 , G06K9/627
Abstract: 本发明涉及一种基于增强型深度卷积神经网络的行人再识别方法,使用基础深度学习卷积神经网络模型提取行人图像的基础深度特征,同时使用传统手动特征提取方法提取行人图像的手动特征并降维;应用特征重建模块将基础深度特征和手动特征融合成增强型深度特征;通过特征比较预测两张图像中行人是否为同一个人,联合使用分类损失函数和验证损失函数对输入图像进行分类和异同验证,以最小化联合损失为目标来训练网络,使得网络生成更有判别力的行人图像特征。本发明充分利用了手动特征和深度特征之间的互补性,提出了联合使用分类损失和验证损失函数用于监督网络训练的策略,获得了良好的性能,有效地提高行人再识别准确率。
-
公开(公告)号:CN107679461A
公开(公告)日:2018-02-09
申请号:CN201710816499.7
申请日:2017-09-12
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明设计了一种基于对偶综合-解析字典学习的行人再识别方法,其主要技术特点是:从行人再识别数据中提取行人图像特征;采用局部Fisher判决分析方法将不同摄像机视角下的行人图像特征投影到公共特征空间;运用对偶综合-解析字典学习算法,在公共特征空间中学习对偶综合字典和对偶解析字典;建立行人匹配模型,并利用改进余弦公式进行行人距离计算。本发明设计合理,其通过在原始对偶综合字典学习中引入对偶解析字典,解析字典拥有判决能力,提高了综合字典的数据表示能力,使得字典能够更有效的表示数据的本征结构,获得了有效的再识别性能。
-
公开(公告)号:CN107292914A
公开(公告)日:2017-10-24
申请号:CN201710450318.3
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于小型单支卷积神经网络的视觉目标跟踪方法,其主要技术特点是:搭建小型单支卷积神经网络;设计损失函数用于卷积神经网络的训练;对测试序列进行目标跟踪,当新视频帧到来时,根据损失函数的结果判断网络参数的更新与否;将卷积神经网络的输出结果送给二元分类器,预测出目标位置。本发明利用了深度卷积网络对目标物体强大的表示能力,构建小型单支卷积神经网络,提出新的损失函数和更新策略,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性以及跟踪速率,获得了很好的目标跟踪结果。
-
公开(公告)号:CN106651821A
公开(公告)日:2017-05-10
申请号:CN201611055890.1
申请日:2016-11-25
Applicant: 北京邮电大学
IPC: G06T5/50
CPC classification number: G06T5/50 , G06T2207/20221
Abstract: 本发明提供一种基于二阶矩保持传播算法的拓扑地图融合方法及系统。所述方法包括:S1,基于概率性广义Voronoi图方法对不同地图进行融合;S2,通过二阶矩保持传播方法消除地图融合的非线性不确定度。本发明首先在保留地图显著性信息的情况下,对地图进行骨架的提取,这样可以简化地图中的信息,使运算更加简便;考虑到了使用PGVD时占用栅格地图中的不确定度,利用线性化来解决转换过程中的不确定度问题。比起其他算法,它是快速且鲁棒的,能够对相似度更大的区域进行优先匹配。
-
-
-
-
-
-
-
-
-