-
公开(公告)号:CN116579947A
公开(公告)日:2023-08-11
申请号:CN202310604365.4
申请日:2023-05-26
Applicant: 北京邮电大学
IPC: G06T5/00 , G06V10/774 , G06V10/82 , G06N3/0464 , G06V10/80
Abstract: 本发明涉及一种基于纯噪声训练的亮度可调的低照度图像增强方法,其技术特点是:训练阶段采样随机高斯噪声作为低照度输入图像;将低照度输入图像和亮度变化因子分别送入到图像处理模块和亮度处理模块中,得到特征图和特征向量;对特征图和特征向量通过卷积和非线性变换的操作,实现特征的融合和重构,输出通道数为6的曲线参数;将低照度输入图像增强为由亮度变化因子的幅值指导的具有特定亮度的输出图像;作均值和对比度变换,得到伪参考图像;计算总损失,进行迭代优化网络。本发明采用纯噪声的训练策略,帮助模型绕过常用的色彩恒常和光照平滑损失,使难以设计的非线性曲线形式简化为线性曲线形式,实现了低照度增强领域降本增效的功能。
-
公开(公告)号:CN113158584A
公开(公告)日:2021-07-23
申请号:CN202110566230.4
申请日:2021-05-24
Applicant: 北京邮电大学
Abstract: 本发明提出了多模态特征嵌入预训练网络搭配效果评估的上界替代法,属于计算机视觉多模态技术领域。本发明提出的方法包括步骤:1)将所有模态特征嵌入预训练网络所提取到的特征进行遍历搭配;2)对得到的所有的搭配情况,对任务网络按照正式训练时提前设定好的参数,利用测试集部分进行训练;3)、对得到的每种搭配对应的模型,对其在测试集上进行测试,记录每一种搭配所对应的测试结果;4)、对所对应的每一种测试结果,选择效果最好的结果对应的模态特征嵌入预训练网络搭配;5)、对选出的网络搭配,将任务模型在这种搭配下所对应的训练集的特征下进行训练,训练得到的模型就是最优的模型。
-