基于BERT的媒体信息观点抽取方法、装置、设备和存储介质

    公开(公告)号:CN113139116A

    公开(公告)日:2021-07-20

    申请号:CN202010060445.4

    申请日:2020-01-19

    Abstract: 本发明公开了一种基于BERT的媒体信息观点抽取方法、装置、设备和存储介质。该方法包括:获取观点待抽取的语料信息;利用预设的命名实体识别算法,识别语料信息中的命名实体;将命名实体和语料信息输入预先训练的观点抽取模型中,并获取观点抽取模型输出的命名实体对应的观点信息;其中,观点抽取模型根据命名实体和语料信息,生成命名实体对应的字符序列;观点抽取模型的BERT模型根据命名实体对应的字符序列,生成命名实体对应的字符向量序列;观点抽取模型的softmax层根据命名实体对应的字符向量序列以及训练观点抽取模型时得到的片段开始向量和片段结束向量,确定命名实体对应的观点信息。本发明可以减轻人工抽取观点信息的工作量,提升观点信息抽取的准确性。

    基于大模型的海量负面信息检测方法、装置、设备及介质

    公开(公告)号:CN119005198A

    公开(公告)日:2024-11-22

    申请号:CN202411030867.1

    申请日:2024-07-30

    Abstract: 本公开涉及一种基于大模型的海量负面信息检测方法、装置、设备及介质。其中,基于大模型的海量负面信息检测方法包括:获取待检测文本,由目标机器学习模型对待检测文本进行分析输出第一结果,在第一结果为待检测文本对应的情感分析结果为非负面时,获取目标指令语句,由目标大语言模型基于目标指令语句对待检测文本进行情感分析,输出第二结果,将第二结果确定为待检测文本的检测结果,目标大语言模型的第一参数量高于目标机器学习模型的第二参数量,由此,能够通过不同参数量的机器学习模型和大语言模型结合的方式对待检测文本进行情感分析,确定待检测文本的检测结果,实现了在对待检测文本快速进行情感分析的基础上提高了情感分析的准确性。

    评论生成模型训练方法和装置、信息生成方法和装置

    公开(公告)号:CN117591948B

    公开(公告)日:2024-09-03

    申请号:CN202410082714.5

    申请日:2024-01-19

    Abstract: 本公开提供了一种评论生成模型训练方法和装置,涉及人工智能技术领域,具体涉及自然语言处理、深度学习、大模型等技术领域。具体实现方案为:获取文本样本集,文本样本集包括:第一文本样本,第一文本样本包括:展示文本以及与展示文本相关的情感立场文本;获取预先构建的评论生成网络,评论生成网络包括:编码器和解码器,编码器分别对展示文本和情感立场文本进行建模,得到评论全局特征向量;解码器用于对评论全局特征向量进行解码,得到评论结果信息;将从文本样本集中选取的第一文本样本输入评论生成网络,得到评论生成网络输出的评论结果信息;基于评论结果信息,得到训练完成的评论生成模型。

    基于预训练模型的通用立场检测方法、装置和存储介质

    公开(公告)号:CN117972420A

    公开(公告)日:2024-05-03

    申请号:CN202410038893.2

    申请日:2024-01-10

    Abstract: 本申请涉及自然语言处理技术领域,尤其涉及一种基于预训练模型的通用立场检测方法、装置和存储介质。包括:获取待检测文本和待检测立场目标;将待检测文本和待检测立场目标输入通用立场检测模型,预测待检测文本对于待检测立场目标的立场类别概率分布;立场类别用于表示待检测文本对于待检测立场目标的立场;通用立场检测模型为根据至少一个文本、至少一个立场目标、每个文本的立场类别和每个文本的立场类型预先训练得到;立场类型用于表示文本的立场类别是否依赖于立场目标;将立场类别概率分布中最大概率数值对应的立场类别,确定为待检测文本对于待检测立场目标的立场类别。本申请实施例用于解决立场检测的检测效果较差的问题。

    面向大语言模型的词向量生成方法、电子设备及存储介质

    公开(公告)号:CN117113990A

    公开(公告)日:2023-11-24

    申请号:CN202311374453.6

    申请日:2023-10-23

    Abstract: 本发明涉及计算机技术应用领域,提供了一种面向大语言模型的词向量生成方法、电子设备及存储介质,包括:获取待分词的文本,作为目标文本;对目标文本进行分词处理,得到对应的分词集S;基于预设词向量基准表T,获取每个词在每个嵌入矩阵的特征向量;基于预设滑动窗口长度d,将S划分为多个语句片段,得到对应的语句片段集SP;对每个语句片段的特征向量进行融合,得到对应的特征向量;得到SP对应的特征向量F作为目标文本的特征向量。本发明在词向量生成过程中,将多个相邻的词组合视为一个词,能够使得分词的长度得到极大的压缩。此外,将不同词的特征向量通过张量积的方式组合成一个词的特征向量,可以极大的降低可训练参数量。

Patent Agency Ranking