-
公开(公告)号:CN109671799A
公开(公告)日:2019-04-23
申请号:CN201811578851.9
申请日:2018-12-21
Applicant: 中国科学院微电子研究所
IPC: H01L31/118 , H01L31/0224 , H01L31/18
CPC classification number: H01L31/1185 , H01L31/022416 , H01L31/18 , H01L31/1804
Abstract: 本发明公开了一种漂移探测器及其制作方法,其中,漂移探测器,包括:高阻N型衬底、P型半导体薄膜、N型半导体薄膜、金属电极层和隔离层,其中,P型半导体薄膜与高阻N型衬底构成PN结,或者P型半导体薄膜中的P型掺杂剂扩散到N型衬底中构成PN结,PN结形成:漂移电极、第一保护环、第二保护环和入射窗口;N型半导体薄膜与高阻N型衬底构成高低结,或者N型半导体薄膜中的N型掺杂剂扩散到N型衬底中构成高低结,高低结形成:阳极、第一接地电极和第二接地电极;以及第二P型半导体薄膜,用来形成分压器。该漂移探测器实现大面积、低噪声、能量分辨率高,且具有简单的制作工艺,可进行大批量制造。
-
公开(公告)号:CN109671797A
公开(公告)日:2019-04-23
申请号:CN201811579268.X
申请日:2018-12-21
Applicant: 中国科学院微电子研究所
IPC: H01L31/115 , H01L31/0224
Abstract: 本发明公开了一种漂移探测器及其制作方法,该漂移探测器包括:第一导电半导体衬底、隧穿氧化层、第二导电半导体层、第三导电半导体层、金属电极层和隔离层;其中,第二导电半导体层与第一导电半导体衬底的导电类型相反,第三导电半导体层与第一导电半导体衬底的导电类型相同,第二导电半导体层、位于其下方的隧穿氧化层和第一导电半导体衬底共同构成PN结,该PN结形成:漂移电极、第一保护环、入射窗口和第二保护环;第三导电半导体层、位于其下方的隧穿氧化层和第一导电半导体衬底共同构成高低结,该高低结形成:阳极、第一接地电极和第二接地电极。该漂移探测器实现大面积、低噪声、能量分辨率高,且具有简单的制作工艺,可进行大批量制造。
-
公开(公告)号:CN109494147A
公开(公告)日:2019-03-19
申请号:CN201811349424.3
申请日:2018-11-13
Applicant: 中国科学院微电子研究所
IPC: H01L21/02
Abstract: 一种基于交流电压下微波等离子体的碳化硅氧化方法,包括:步骤一、提供碳化硅衬底,将碳化硅衬底放置在微波等离子体发生装置中;步骤二、加入含氧气体,在交流电压下产生氧等离子体;步骤三、通过所述交流电压控制所述氧等离子体中的氧离子与电子的运动,在所述碳化硅衬底上生成预定厚度的氧化层,其中,碳化硅衬底电压为负时,氧离子靠近界面与碳化硅发生氧化反应,碳化硅衬底电压为正时,电子靠近界面与碳化硅发生还原反应,将碳残留去除;步骤四、停止通入含氧气体,反应结束。本发明可以实现对碳化硅氧化层的实时修复,有效减小碳残留,改善界面质量,减小氧化层中的缺陷中心对载流子的散射作用。
-
公开(公告)号:CN109341880A
公开(公告)日:2019-02-15
申请号:CN201811156415.2
申请日:2018-09-30
Applicant: 中国科学院微电子研究所
Abstract: 本发明公开了一种环形温度传感器,用于测量晶体管的温度,包括:按由内而外顺序依次设置在所述晶体管的有源区的环形P型重掺杂区、环形N型重掺杂区、环形阳极、环形N阱区以及环形P阱区;以及环形阴极,所述环形阴极设置在所述环形N型重掺杂区;其中,所述环形阴极与所述晶体管的源极短路设置。
-
公开(公告)号:CN109166918A
公开(公告)日:2019-01-08
申请号:CN201811004891.2
申请日:2018-08-30
Applicant: 中国科学院微电子研究所
IPC: H01L29/739 , H01L29/06 , H01L21/04
Abstract: 本发明提供一种绝缘栅双晶体管及其制作方法,绝缘栅双极晶体管包括:衬底;缓冲层形成于衬底上;外延层形成于缓冲层上;埋层基区形成于外延层内;沟槽型栅极形成于外延层内;浮空掺杂区形成沟槽型栅极之间,浮空掺杂区内的电位是浮空的;介质层形成外延层上;埋层基区位于沟槽型栅极的一侧,埋层基区位于源区的下方,且在纵向分布上,埋层基区的深度大于所述沟槽型栅极的深度;如此,埋层基区可降低沟槽型栅极底部拐角处的电场强度,提高栅介质层的可靠性及稳定性;沟槽型栅极可以消除JFET区电阻,降低晶体管的正向导通电压;浮空掺杂区可以降低沟槽型栅极底部另一拐角处的电场强度,增大晶体管的元胞节距和优化沟道晶向,提高击穿电压。
-
公开(公告)号:CN108770174A
公开(公告)日:2018-11-06
申请号:CN201810521198.6
申请日:2018-05-25
Applicant: 中国科学院微电子研究所
IPC: H05H1/46
CPC classification number: H05H1/46 , H05H2001/4607
Abstract: 一种具有微孔/微纳结构双耦合谐振腔的微波等离子体发生装置,包括外腔体和设置在所述外腔体内的多个微孔/微纳结构双耦合谐振腔,其中所述谐振腔包括一圆柱形腔体,所述圆柱形腔体的周壁上均匀分布由多个微孔形成的微孔阵列,所述微孔的直径是波长的奇数倍,所述腔体的内壁上具有金属微纳结构,所述金属微纳结构的周期尺寸为λ/n,λ为入射波长,n为谐振腔材料的折射率。本发明通过优化设计双耦合谐振方式,来减少引导模和泄漏模的损耗,达到在固定区域谐振最大程度增强的目的,并能提高等离子体的均匀性,保证光耦合和场空间局域增强特性的前提下,可改善吸收损耗问题,另外多个谐振腔独立控制,可以有效控制等离子体的温度。
-
公开(公告)号:CN108666206A
公开(公告)日:2018-10-16
申请号:CN201810521200.X
申请日:2018-05-25
Applicant: 中国科学院微电子研究所
IPC: H01L21/02
CPC classification number: H01L21/02164 , H01L21/02233 , H01L21/02252
Abstract: 一种基于两步微波等离子体氧化的碳化硅氧化方法,包括:提供碳化硅衬底;将所述碳化硅衬底放置在微波等离子体发生装置中;通入第一含氧气体,产生的氧等离子体以第一升温速度升温到第一温度,在所述第一温度和第一压力下进行低温等离子体氧化;将氧等离子体以第二升温速度升温到第二温度,通入第二含氧气体,在所述第二温度和第二压力下进行高温等离子体氧化,直到生成预定厚度的二氧化硅;停止通入含氧气体,反应结束;其中,第一温度为300-400℃,第二温度为700-900℃,所述第一压力为100-200mTorr,所述第二压力为700-900mTorr,所述第一升温速度大于所述第二升温速度。本发明可以显著提高碳化硅的氧化效率,有效改善界面质量。
-
公开(公告)号:CN108565221A
公开(公告)日:2018-09-21
申请号:CN201810593138.5
申请日:2018-06-08
Applicant: 中国科学院微电子研究所
Abstract: 一种匹配(Al,In)GaN材料的超低界面态界面结构及其制备方法,所述超低界面态界面结构包括:(Al,In)GaN基板;以及形成于所述(Al,In)GaN基板材料上的Si2N2O层,其中所述Si2N2O层为单晶或者多晶类型。本发明提出的新结构及其制备方法可以获得与(Al,In)GaN材料晶格常数高度匹配的界面,并实现超低界面态,可以有效解决长期困扰III族氮化物(III-N)体系的界面态问题,从而推动III-N电子器件的规模化和实用化。
-
公开(公告)号:CN105070663B
公开(公告)日:2018-07-20
申请号:CN201510564659.4
申请日:2015-09-07
Applicant: 中国科学院微电子研究所 , 株洲南车时代电气股份有限公司
IPC: H01L21/336 , H01L29/78 , H01L29/16
Abstract: 本发明公开了一种碳化硅MOSFET沟道自对准工艺实现方法,包括:清洗碳化硅外延片;在所述碳化硅外延片上沉积第一层介质层;在所述第一层介质层上沉积第二层介质层;在所述第二层介质层上涂覆光刻胶,并光刻显影出初步的P型基区窗口;光刻胶掩膜刻蚀SiO2介质;以剩余光刻胶和SiO2组合掩膜刻蚀多晶硅,刻蚀完成后去除剩余光刻胶;以多晶硅为离子注入阻挡层,铝离子注入形成P型基区;在所述的多晶硅上沉积并刻蚀SiO2,形成侧墙掩膜;以多晶硅和侧墙为离子注入阻挡层,氮离子注入形成N+源区;去除SiO2及多晶硅,并形成P+离子注入阻挡层;铝离子注入形成P+接触区。本发明通过沉积多晶硅并形成侧墙作为P+接触区域阻挡层,避免该区域注入氮离子,不需要剥离工艺。
-
公开(公告)号:CN108198865A
公开(公告)日:2018-06-22
申请号:CN201711422454.8
申请日:2017-12-25
Applicant: 中国科学院微电子研究所
IPC: H01L29/861 , H01L29/06 , H01L21/329
Abstract: 本发明提供一种垂直结构的GaN功率二极管器件制作方法,其中包括:步骤一、提供衬底,提供在衬底上的外延层,并在外延层上生长反型掺杂外延层;步骤二、图形化刻蚀反型掺杂外延层,形成凹槽;步骤三、在器件表面再生长外延层,并填充凹槽;步骤四、在器件表面淀积第一阳极金属层,在反型掺杂外延层区域图形化第一阳极金属,制作欧姆合金;步骤五、在器件正表面淀积第二阳极金属层,并在器件背面制作阴极。本发明还提供一种垂直结构的GaN功率二极管器件。本发明能够GaN基功率二极管在更高电流和功率环境下的性能。
-
-
-
-
-
-
-
-
-