-
公开(公告)号:CN119068376A
公开(公告)日:2024-12-03
申请号:CN202310623041.5
申请日:2023-05-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V20/00 , G06V40/16 , G06V40/40 , G06V10/46 , G06V10/50 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0895 , G06N3/084
Abstract: 本申请公开了一种深度伪造视频的溯源方法和装置。其中,该方法包括:利用全局特征匹配预训练数据集对第一原始模型进行训练,得到第一目标模型,第一原始模型是结合语言监督和图像自监督的多任务模型,用于从全局特征匹配预训练数据集中学习图像与图像之间的特征关联、图像与文本之间的特征关联;利用第一目标模型对深度伪造视频进行溯源。本申请解决相关技术中不能对深度伪造视频进行溯源的技术问题。
-
公开(公告)号:CN115310000A
公开(公告)日:2022-11-08
申请号:CN202110432130.2
申请日:2021-04-21
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国科智安(北京)科技有限公司
IPC: G06F16/9536 , G06F16/955 , G06Q50/00
Abstract: 本发明提供了一种信息处理方法、处理装置、电子设备和可读存储介质,方法包括:获取文本数据,根据文本数据得到目标统一资源定位符;将文本数据输入至目标业务的分类模型,得到文本数据的目标业务相关度;确定目标统一资源定位符的热度值;根据热度值和文本数据的目标业务相关度,确定目标统一资源定位符的推荐指数;根据推荐指数,输出目标统一资源定位符,通过运行该方法,可以为文本数据中的抽取得到的目标统一资源定位符标注推荐指数,并根据推荐指数输出目标统一资源定位符,以实现信源的推荐。
-
公开(公告)号:CN113505221A
公开(公告)日:2021-10-15
申请号:CN202010214386.1
申请日:2020-03-24
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 北京中科闻歌智安科技有限公司
Abstract: 本发明公开了一种企业虚假宣传风险识别方法、设备和存储介质。该方法包括:在目标企业对应的多个企业舆情文本中,提取疑似风险文本;在每个疑似风险文本中提取对应种类的风险特征,形成每个疑似风险文本对应的风险特征向量;将多个疑似风险文本分别对应的风险特征向量顺次输入预先训练的风险识别模型,使风险识别模型对每个疑似风险文本进行识别,并将识别为存在虚假宣传风险的疑似风险文本确定为风险文本;根据确定出的所有风险文本的信息,确定目标企业对应的虚假宣传风险强度值;如果虚假宣传风险强度值大于预设的风险阈值,则确定目标企业存在虚假宣传风险。本发明可以避免人工匹配规则的局限性,提升了虚假宣传风险识别的准确性。
-
公开(公告)号:CN110059181B
公开(公告)日:2021-06-25
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN105740236B
公开(公告)日:2018-09-07
申请号:CN201610066957.5
申请日:2016-01-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明公开了一种结合写作特征和序列特征的中文情感新词识别方法和系统。该方法对于输入文本子句,基于情感词的作者写作特征和情感词的序列特征将文本子句表示为各种特征(如:字、词性等)的序列。然后,针对特征表示的文本子句,利用线性链条件随机场模型输出与文本子句对应的情感词标签序列。其中,线性链条件随机场模型基于包含传统情感词的文本训练得到。接着,基于文本子句中字的序列和情感词标签序列,利用有限状态自动机识别文本子句中的情感词,形成情感词集合。最后,利用中文旧词词库对情感词集合进行过滤,将未出现在中文旧词词库中的情感词作为中文情感新词。通过本发明实施例解决了如何提高情感新词识别精度和召回率的技术问题。
-
-
-
-