-
公开(公告)号:CN103996843B
公开(公告)日:2016-04-20
申请号:CN201410221391.X
申请日:2014-05-23
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种多孔锰酸锂纳米片及其制备方法,本发明是采用甘蔗渣作为还模板制备多孔锰酸锂纳米片,工艺步骤为:(1)甘蔗渣处理,(2)制备混合液,(3)吸附,(4)煅烧,(5)清洗。经过检测本多孔锰酸锂纳米片厚度尺寸为20-50纳米,因其具有良好的电化学性能,可用作水系锂电电极材料。本发明与现有技术相比,制备工艺简单、低成本、绿色环保、资源丰富,产品具有应用优势,有较好的经济效益、社会效益和生态效益。
-
公开(公告)号:CN105097276A
公开(公告)日:2015-11-25
申请号:CN201510449224.5
申请日:2015-07-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种多层薄膜电容器的无掩膜制备方法。该方法先配制纳米金属粉体浆料或采用溶胶凝胶法制备非金属导电氧化物胶体,并均匀涂覆在基片上,然后通过可控温度的红外光斑对基片定向扫描加热,从而使浆料或胶体在干燥、挥发过程中发生定向收缩并形成初始电极图案,最后采用激光光斑加热,使金属电极材料发生表面粘结或使非金属导电氧化物结晶并形成清晰的电极图案最后采用溶胶凝胶法或溅射法制备介质薄膜,再按上述方法在介质薄膜上制备电极薄膜,并利用定向扫描加热使第二层电极与底电极形成错层,重复上述步骤制成具有叉指结构的多层薄膜电容器。本发明无需使用掩膜或光刻技术即可实现多层薄膜电容器的制备,具有成本低,工艺控制简单的特点。
-
公开(公告)号:CN105006362A
公开(公告)日:2015-10-28
申请号:CN201510449369.5
申请日:2015-07-28
Applicant: 桂林电子科技大学
IPC: H01G4/33
Abstract: 本发明公开了一种可剥离衬底的薄膜电容器制备方法。其工艺步骤为:①在衬底上旋涂一定厚度的聚胺脂胶层,并用紫外光固化;②采用溶胶凝胶或溅射法制备介质层;③采用溅射法制备电极层,并利用激光刻蚀获得图案化电极图层;④再按介质层/电极图层/介质层/电极图层的方式依次制备,并在电容器长边的两端制备端电极,形成叉指结构的单层或多层薄膜电容器;⑤将上述薄膜电容器放入电阻炉,在一定温度进行退火处理,使介质层晶化并烧掉有机层,实现薄膜电容器从衬底上的剥离。本发明无需使用酸或碱等腐蚀物质即可实现器件与衬底的剥离,具有工艺简单、易于工业化的特点,特别适合于制作各种单层或多层薄膜元器件。
-
公开(公告)号:CN104843976A
公开(公告)日:2015-08-19
申请号:CN201510150714.5
申请日:2015-04-01
Applicant: 桂林电子科技大学
IPC: C03B23/03
CPC classification number: Y02P40/57
Abstract: 本发明公开了一种3D曲面超薄玻璃弯曲成型装置和制造方法。该装置包括:转盘、凹模、凸模、气缸、玻璃转移机构、隧道炉、真空系统以及电气控制操作系统,其中转盘上设有多个凹模。采用上述装置,分阶段快速加热凹模和凸模,将超薄玻璃依次置于转盘的凹模上,并进行预热,当超薄玻璃旋转到达凸模对应的工位后,压下凸模并利用远红外灯管快速加热到玻璃软化点,同时利用真空系统对凹模上的超薄玻璃抽吸和凸模加压,使超薄玻璃发生弯曲,经玻璃转移机构将超薄玻璃转到隧道炉进行降温,即可实现3D曲面超薄玻璃的制造。本方法具有批量化、自动化、高效制造的特点,特别适合用于曲面显示屏保护膜的3D曲面超薄玻璃的制造。
-
公开(公告)号:CN103996843A
公开(公告)日:2014-08-20
申请号:CN201410221391.X
申请日:2014-05-23
Applicant: 桂林电子科技大学
CPC classification number: H01M4/505 , B82Y30/00 , B82Y40/00 , H01M10/0525
Abstract: 本发明公开了一种多孔锰酸锂纳米片及其制备方法,本发明是采用甘蔗渣作为还模板制备多孔锰酸锂纳米片,工艺步骤为:(1)甘蔗渣处理;(2)制备混合液;(3)吸附;(4)煅烧;(5)清洗。经过检测本多孔锰酸锂纳米片厚度尺寸为20-50纳米,因其具有良好的电化学性能,可用作水系锂电电极材料。本发明与现有技术相比,制备工艺简单、低成本、绿色环保、资源丰富,产品具有应用优势,有较好的经济效益、社会效益和生态效益。
-
公开(公告)号:CN102436936B
公开(公告)日:2013-06-05
申请号:CN201110269256.9
申请日:2011-09-13
Applicant: 桂林电子科技大学
IPC: H01G9/048
Abstract: 本发明公开了一种超级电容器用具有双重3D结构的二氧化锰薄膜电极及其制备方法,采用具有3D结构的泡沫镍等泡沫金属集流体上覆盖另一3D结构的二氧化锰薄膜组成。其制备方法是在泡沫镍等泡沫金属集流体上通过水热的方法直接反应制备得到二氧化锰薄膜。所述水热制备过程包括集流体清洗、溶液配制以及水热反应等步骤。所制备的薄膜电极具有双重3D结构,且而作为超级电容器的电极具有良好的电容特性及较高的储能特性。同现有技术相比较,本发明制备得到的超级电容器用二氧化锰薄膜电极,较现有二氧化锰电极具有更大的活性物质与电解液接触面积,具有更高的活性物质利用率和更高的比容量。
-
公开(公告)号:CN102867655A
公开(公告)日:2013-01-09
申请号:CN201210392323.0
申请日:2012-10-16
Applicant: 桂林电子科技大学
IPC: H01G11/84
CPC classification number: Y02E60/13
Abstract: 本发明公开了一种管状介孔二氧化锰的超级电容器及其制备方法,其特征在于:管状介孔二氧化锰的超级电容器,是具有孔径分布为2-50nm、管径为0.5-10μm、内外径比>0.9、长径比>10的α、β、或γ相二氧化锰,或三种晶相中两两混合,或三种晶相混合的二氧化锰,其制备方法是把棉花浸泡在高锰酸钾的水溶液中,待干燥后将吸附高锰酸钾的棉花在空气中煅烧,再将煅烧后的产物进行水洗及干燥得到氧化锰粉体,具有良好的电容特性及较高的储能特性,可用作为超级电容器的电极材料,本发明简单、环保、低成本且性能好等优点。
-
公开(公告)号:CN101913868A
公开(公告)日:2010-12-15
申请号:CN201010247474.8
申请日:2010-08-06
Applicant: 桂林电子科技大学
IPC: C04B35/495 , C04B35/622 , C30B29/30
Abstract: 本发明的目的是提供一种铌酸钾钠织构陶瓷与铌酸钾钠单晶的制备方法,它以K0.5Na0.5NbO3为主体材料,LiBiO3或BiNiO3作为掺杂原料组成;以无水乙醇为介质湿磨,烘干后合成瓷料;瓷料经二次球磨,烘干后加粘结剂造粒,在110MPa的压力下压制成素坯试样,将素坯试样水平放置于高温电炉中烧结,烧结后,随炉冷却至室温,即制得KNN基陶瓷,控制烧结温度和烧结时间,还可获得尺寸达到2mm以上的单晶。采用传统的陶瓷制备工艺,在常规条件制备出具有良好择优取向的KNN陶瓷,如果控制烧结温度和时间还可以获得尺寸达到2mm以上的单晶。
-
公开(公告)号:CN119944055A
公开(公告)日:2025-05-06
申请号:CN202510114936.5
申请日:2025-01-24
Applicant: 桂林电子科技大学
IPC: H01M10/0565 , C08F259/08 , C08F283/06 , C08F222/20 , H01M10/052 , H01M10/0525 , H01M10/42 , B33Y80/00 , B33Y70/10
Abstract: 本发明公开一种3D打印多层复合全固态电解质膜及其制备方法,属于全固态电解质技术领域。本发明的制备方法包括以下步骤:(1)溶液预混合:将光敏树脂、非质子型极性溶液、无机填料、光引发剂和锂盐进行混合,得到混合溶液;(2)浆料A和浆料B的制备:取混合溶液,分别加入聚偏二氟乙烯和聚氧化乙烯,超声处理后,进行油浴加热,分别得到浆料A和浆料B;(3)电解质膜的制备:将浆料A和浆料B依次倒入3D打印机的打印槽中进行打印,浆料A打印的膜作为中间夹层膜,浆料B打印的膜作为顶层和底层膜,打印完成后,进行洗涤和干燥,得到3D打印多层复合全固态电解质膜。该制备方法有效抑制了锂枝晶的穿透,增强了膜的整体稳定性和耐用性。
-
公开(公告)号:CN118530461A
公开(公告)日:2024-08-23
申请号:CN202410433620.8
申请日:2024-04-11
Applicant: 桂林电子科技大学
IPC: C08G83/00 , B01J31/18 , B01J35/40 , B01J35/61 , H01G11/36 , H01G11/24 , H01G11/86 , H01M4/36 , B82Y40/00 , B82Y30/00 , H01M4/587 , H01M4/60
Abstract: 本发明公开了一种ZIF‑67衍生超薄二维碳纳米片的制备方法,所述方法包括:(1)将双氧水加入醇类溶剂中,得到溶液A;将钴盐溶于醇类溶剂中,得到溶液B;将2‑甲基咪唑溶于溶液A中,得到溶液C;双氧水与醇类溶剂的体积比为(0.5~4):(9.5~6)。(2)将经搅拌处理后的溶液B滴加入溶液C中得到混合溶液,控制钴盐与2‑甲基咪唑的质量比为1:(0.8~1.5);继续搅拌,将十八烷基二甲基羟乙基季铵硝酸盐滴入搅拌中的混合溶液,干燥后得到ZIF‑67衍生超薄二维碳纳米片。本发明应用于超级电容器和锂电池电极材料方面,具有优越的电子转移特性,电解质和电极之间的界面更加清晰,能确保沿二维基面上的快速电荷转移,提高催化性能。
-
-
-
-
-
-
-
-
-