基于堆叠自编码深度学习网络的航空发动机修后性能预测方法

    公开(公告)号:CN108153982B

    公开(公告)日:2021-07-06

    申请号:CN201711436067.X

    申请日:2017-12-26

    Inventor: 钟诗胜 林琳 李臻

    Abstract: 基于堆叠自编码深度学习网络的航空发动机修后性能预测方法,本发明涉及航空发动机修后性能预测方法。本发明为了解决现有技术进行航空发动机修后性能预测误差较大的缺点。本发明包括:一:得到送修前性能参数特征向量矩阵和单元体维修深度特征向量矩阵;二:将送修前性能参数特征向量和单元体维修深度特征向量进行合并,得到修后性能特征向量;三:利用修后性能特征向量和每个维修案例对应的修后性能参数序列,采用BP神经网络建立航空发动机修后性能预测模型;四:将建立的航空发动机修后性能预测模型采用粒子群优化算法进行c、d、h的优化,得到最优航空发动机修后性能预测模型。本发明用于发动机的维修维护领域。

    一种航空发动机修后排气温度裕度预测方法

    公开(公告)号:CN108170945B

    公开(公告)日:2021-07-02

    申请号:CN201711436066.5

    申请日:2017-12-26

    Inventor: 钟诗胜 林琳 李臻

    Abstract: 一种航空发动机修后排气温度裕度预测方法,本发明涉及航空发动机修后排气温度裕度预测方法。本发明为了解决现有技术航空发动机修后排气温度裕度预测误差较大的的缺点。本发明包括:一:采用五次多项式拟合对航空发动机送修前性能参数序列进行特征提取,得到送修前性能参数特征向量矩阵;二:采用堆叠自编码深度学习网络对航空发动机单元体维修深度进行特征提取,得到单元体维修深度特征向量矩阵;三:将送修前性能参数特征向量和单元体维修深度特征向量进行合并,得到修后性能特征向量;四:利用修后性能特征向量和每个维修案例对应的修后性能参数序列,采用BP神经网络建立航空发动机修后性能预测模型;本发明用于发动机的维修维护领域。

    一种航空发动机修后排气温度裕度预测方法

    公开(公告)号:CN108170945A

    公开(公告)日:2018-06-15

    申请号:CN201711436066.5

    申请日:2017-12-26

    Inventor: 钟诗胜 林琳 李臻

    Abstract: 一种航空发动机修后排气温度裕度预测方法,本发明涉及航空发动机修后排气温度裕度预测方法。本发明为了解决现有技术航空发动机修后排气温度裕度预测误差较大的缺点。本发明包括:一:采用五次多项式拟合对航空发动机送修前性能参数序列进行特征提取,得到送修前性能参数特征向量矩阵;二:采用堆叠自编码深度学习网络对航空发动机单元体维修深度进行特征提取,得到单元体维修深度特征向量矩阵;三:将送修前性能参数特征向量和单元体维修深度特征向量进行合并,得到修后性能特征向量;四:利用修后性能特征向量和每个维修案例对应的修后性能参数序列,采用BP神经网络建立航空发动机修后性能预测模型;本发明用于发动机的维修维护领域。

    基于堆叠自编码深度学习网络的航空发动机修后性能预测方法

    公开(公告)号:CN108153982A

    公开(公告)日:2018-06-12

    申请号:CN201711436067.X

    申请日:2017-12-26

    Inventor: 钟诗胜 林琳 李臻

    Abstract: 基于堆叠自编码深度学习网络的航空发动机修后性能预测方法,本发明涉及航空发动机修后性能预测方法。本发明为了解决现有技术进行航空发动机修后性能预测误差较大的缺点。本发明包括:一:得到送修前性能参数特征向量矩阵和单元体维修深度特征向量矩阵;二:将送修前性能参数特征向量和单元体维修深度特征向量进行合并,得到修后性能特征向量;三:利用修后性能特征向量和每个维修案例对应的修后性能参数序列,采用BP神经网络建立航空发动机修后性能预测模型;四:将建立的航空发动机修后性能预测模型采用粒子群优化算法进行c、d、h的优化,得到最优航空发动机修后性能预测模型。本发明用于发动机的维修维护领域。

Patent Agency Ranking