-
公开(公告)号:CN114921629B
公开(公告)日:2022-11-15
申请号:CN202210852086.5
申请日:2022-07-20
Applicant: 中北大学
Abstract: 本发明属于金属材料热处理技术领域,具体为一种7Cr14马氏体不锈钢及其碳化物的细化工艺,采用真空感应熔炼—退火—热轧—高温固溶处理—回火工艺,通过塑性变形结合热处理的方法控制高碳高铬马氏体不锈钢中碳化物的形成为M23C6碳化物,从而细化不锈钢中碳化物,所述7Cr14马氏体不锈钢的碳化物的尺寸≤50nm,抗拉强度≥1200MPa,断后延伸率≥12%,硬度≥40HRC,解决了高碳高铬马氏体不锈钢中大尺寸碳化物导致的材料韧性和硬度下降的缺陷,改善了高碳高铬马氏体不锈钢的性能。
-
公开(公告)号:CN115161691A
公开(公告)日:2022-10-11
申请号:CN202210899079.0
申请日:2022-07-28
Applicant: 中北大学
IPC: C25B11/089 , C25B11/061 , C25B1/04
Abstract: 本发明公开了一种FeCoNiMg高熵非晶合金粉末析氧催化剂及其制备方法。该催化剂分子式为Fe4‑xCo4‑xNi4‑xMgx,X=1~2。FeCoNiMg催化剂的制备方法主要包括将亚铁盐、钴盐、镍盐和镁盐均匀混合加入到水中得到前驱液,通入保护气体去除溶液中的氧气;向前驱溶液中缓慢滴加硼氢化钠溶液,充分反应,滴加及反应过程中保持强力机械搅拌及持续通入保护气体;最后进行抽滤、清洗、真空干燥,即得FeCoNiMg高熵非晶合金催化剂。本发明通过调控合金成分获得成本低廉、适合批量化生产、具有优异催化效果及良好稳定性的高熵非晶合金析氧催化剂。本发明的制备方法成本低、效率高、成分均匀、操作简便、且制备的FeCoNiMg高熵非晶合金颗粒表现出优异的电催化性能,具有低的过电势电位,低塔菲尔斜率,稳定性高等优点。
-
公开(公告)号:CN110951956B
公开(公告)日:2021-07-27
申请号:CN201911318107.X
申请日:2019-12-19
Applicant: 中北大学
Abstract: 本发明公开了一种适用于Fe‑(24‑25Mn)‑(2‑3)Al‑(1‑3)Si‑(0.05‑0.35)C‑(0‑0.3)V的超高塑性TWIP钢的生产方法。将TWIP钢在1200℃均质处理1h后热轧,始轧温度1150℃,终轧温度950℃。然后将热轧钢板在150‑700℃区间选择一个温度保温5‑10分钟,然后在选定温度进行温轧,直至目标厚度,轧制完成后空冷或水冷至室温。将温轧后的TWIP钢板在1000℃退火15‑20分钟后,空冷至室温,可获得总延伸率达到120%的Fe‑Mn‑Al‑Si系与总延伸率达到并超过100%的Fe‑Mn‑Al‑Si‑V系的超高塑性TWIP钢。本方法可大幅度提高TWIP钢的延伸率,改善TWIP钢轧制后塑性严重下降、微合金化TWIP钢塑性低等问题,为TWIP钢后续的加工、应用提供良好的组织及超高的延伸率。
-
公开(公告)号:CN112877619A
公开(公告)日:2021-06-01
申请号:CN202110038995.0
申请日:2021-01-12
Applicant: 中北大学
IPC: C22F1/00
Abstract: 本发明公开了一种抗拉强度达2GPa的(CoCrNi)Al3Ti3中熵合金的制备方法,首先选取(CoCrNi)Al3Ti3中熵合金热轧板材;将热轧板材进行均匀化处理后再次热轧,轧至目标厚度后空冷至室温;将空冷后的板材在室温下冷轧至目标厚度;将冷轧板材以到温入炉的方式在目标温度下进行保温,完成退火,随后水淬至室温;将退火后的板材以到温入炉的方式在目标温度下进行保温,完成时效热处理,随后水淬至室温,即可获得抗拉强度达2GPa的中熵合金。本发明通过控制轧制和热处理工艺参数,合理调控合金内部组织形态,制备出的中熵合金具有超高抗拉强度的优势,为其在高强度服役环境下的应用提供了力学性能保障。
-
公开(公告)号:CN117921142A
公开(公告)日:2024-04-26
申请号:CN202410076543.5
申请日:2024-01-19
Applicant: 中北大学
Abstract: 本发明提供一种用于火力发电清洁系统的复合管道及其制备方法。本发明以316L不锈钢为基管材料,采用熔化极惰性气体保护焊技术,通过PLC控制的智能熔敷成型设备,将Fe‑Cr‑Mn合金焊丝电弧熔敷到不锈钢基管内部,通过调控熔敷工艺能制备出不同规格的Fe‑Cr‑Mn合金/不锈钢双金属复合管。本发明制备的双金属复合管缺陷少,界面结合强度高,晶粒细小且组织致密,因而具有较高的硬度和冲击韧性,硬度高达820HV,室温冲击功高达160J,抗拉强度高达860MPa,屈服强度高达620MPa,断后伸长率高达20%。本发明用于火力发电清洁系统的复合管道具有良好的综合力学性能,因而其使用寿命得到了大幅度提高。
-
公开(公告)号:CN116732297B
公开(公告)日:2023-10-20
申请号:CN202311031002.2
申请日:2023-08-16
Applicant: 中北大学
Abstract: 本发明属于金属材料热处理技术领域,涉及一种含铌高强双相钢及其制备方法和应用,控轧控冷工艺得到的双相钢热轧板卷进行回火得到含铌高强双相钢,所述含铌高强双相钢的组织由3~11%的铁素体和89~97%的马氏体组成,其晶粒为长条状,晶粒平均尺寸为1.8~2.1μm,屈服强度≥1050MPa,抗拉强度≥1150MPa,硬度≥40HRC,延伸率≥15.5%,能够满足汽车用钢的新的发展趋势的要求。
-
公开(公告)号:CN115109891B
公开(公告)日:2022-12-20
申请号:CN202210823071.6
申请日:2022-07-14
Applicant: 中北大学
IPC: C22C38/18
Abstract: 本发明属于钢铁冶炼技术领域,具体为一种高碳高铬含氮马氏体不锈钢及其碳化物细化方法,通过以N元素部分替代高碳高铬马氏体不锈钢中的C元素,调控C/N值,通过碳与氮的相互作用有效控制钢液凝固过程中碳化物的形核与长大行为,改善铸坯凝固组织,细化一次碳化物,提高成分均匀性。利用本发明方法生产的高碳高铬含氮马氏体不锈钢铸坯经后续的热塑性变形和热处理,在细小碳化物和含氮相的协同强化作用下,获得优良的综合力学性能,其硬度≥55 HRC,抗拉强度≥1850 MPa。
-
公开(公告)号:CN114214567B
公开(公告)日:2022-09-30
申请号:CN202111555888.1
申请日:2021-12-18
Applicant: 中北大学
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/44 , C22C38/46 , C22C38/50 , C22C38/52 , C22C38/42 , C22C38/54 , C22C33/04 , C22B9/18 , C22B9/04 , C21D8/06 , C21D1/32 , C21D1/18
Abstract: 一种Ni3Al金属间化合物沉淀强化的高温轴承钢,属于钢铁冶炼技术领域,化学成分重量百分数为:C:0.15%~0.35%、Si:0.05~0.45%、Mn:0.15~0.45%、Cr:4.0~8.0%、Ni:4.0~8.0%、Al:1.2~4.8%、Mo:0.3~0.9%、V:0.3~0.9%、M:0.05~0.35%、P≤0.15%、S≤0.01%,余量Fe,其中合金元素Ni/Al=1.7~3.3,M为W、Zr、Nd、Co、Cu、B中1种或多种元素组成。经真空冶炼、真空电渣重熔冶炼、锻造或轧制、热处理等工艺制备出弥散分布的细小Ni3Al金属间化物沉淀强化的高温轴承钢。本发明制备的轴承钢经450~550℃回火后硬度不低于HRC 56,是制造高温、高速工况下工作的长寿命可靠轴承的理想材料。
-
公开(公告)号:CN114921629A
公开(公告)日:2022-08-19
申请号:CN202210852086.5
申请日:2022-07-20
Applicant: 中北大学
Abstract: 本发明属于金属材料热处理技术领域,具体为一种7Cr14马氏体不锈钢及其碳化物的细化工艺,采用真空感应熔炼—退火—热轧—高温固溶处理—回火工艺,通过塑性变形结合热处理的方法控制高碳高铬马氏体不锈钢中碳化物的形成为M23C6碳化物,从而细化不锈钢中碳化物,所述7Cr14马氏体不锈钢的碳化物的尺寸≤50nm,抗拉强度≥1200MPa,断后延伸率≥12%,硬度≥40HRC,解决了高碳高铬马氏体不锈钢中大尺寸碳化物导致的材料韧性和硬度下降的缺陷,改善了高碳高铬马氏体不锈钢的性能。
-
公开(公告)号:CN109506747B
公开(公告)日:2020-11-17
申请号:CN201811430324.3
申请日:2018-11-28
Applicant: 中北大学
Abstract: 本发明公开了一种称重压电传感器、其制备方法和高速公路称重系统。所述称重压电传感器包括:压力传导结构、预紧力夹板、石英压电晶体和信号调理电路;所述预紧力夹板包括底板和两个对称预紧力侧板,所述石英压电晶体设置在所述底板的上方,两个所述对称预紧力侧板将所述压力传导结构夹紧在所述石英压电晶体的上方;所述石英压电晶体上设置有电极,所述石英压电晶体通过所述电极与所述信号调理电路连接。本发明通过压力传导结构、预紧力夹板和石英压电晶体实现称重,简化高速公路称重系统的结构,通过信号调理电路将测得的模拟信号转化成数字信号进行传输,避免了信号传输过程中的失真,提高了称重精度。
-
-
-
-
-
-
-
-
-