-
公开(公告)号:CN117650530A
公开(公告)日:2024-03-05
申请号:CN202311361086.6
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本发明公开一种基于量子郊狼优化算法的总谐波失真还原方法,包括:初始化候选解种群,每个候选解都由一组参数表示;量子旋转门使用量子旋转门对每个候选解进行编码;可以将每个候选解表示为一个量子态;评估代价函数:评估每个候选解的代价函数值,代价函数是总谐波失真;选择和交叉:选择和交叉优秀候选解以生成新的种群;重复迭代直到满足停止准则为止。本发明设计了一种新的量子郊狼优化算法的总谐波失真还原技术来最小化混合发电系统中的总谐波失真。量子土狼优化算法系统是通过将量子的概念与传统的土狼优化算法结合而来的。本发明对比例积分控制器的积分和比例增益变量进行了调整,从而达到减小总谐波失真的目的。
-
公开(公告)号:CN117575017A
公开(公告)日:2024-02-20
申请号:CN202311358800.6
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
IPC: G06N5/04 , G06N3/044 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/084 , G06N7/01 , G06F18/2415 , G06Q10/04 , G06Q50/26 , C02F3/02
Abstract: 本申请公开了一种污水处理过程的概率推理模型构建方法及其系统,其中,污水处理过程的概率推理模型构建方法,包括如下步骤:根据监测数据构造多个数据集,每个数据集均包括:多种污染物的实际的入口数据和实际的出口数据;利用数据集在混合云的私有云模块内创建概率推理模型;对概率推理模型进行优化,获得优化后的概率推理模型。本申请能够在缺乏IPP的情况下,反向推断出污水处理过程中丢失的IPP,能够令污水处理过程的概率推理模型在没有IPP数据的污水处理过程时依然生效,保证了预测结果的可靠性。
-
公开(公告)号:CN117454022A
公开(公告)日:2024-01-26
申请号:CN202311433512.2
申请日:2023-10-31
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院 , 江西炬能物联技术研究中心有限公司
IPC: G06F16/9536 , G06N5/04 , G06N7/01
Abstract: 本申请涉及数据处理技术领域,尤其涉及一种基于人工智能物联网的隐式组推荐方法及系统,包括:依据物联网设备采集的用户的交互记录,获得用户的偏好特征;依据用户的偏好特征以及该用户所在用户组中的成员之间的合作关系和竞争意向,得到组推荐结果;待得到组推荐结果后,将组推荐结果提供给用户。本申请通过物联网结构作为底层支撑平台,从而可以实时获取和更新组推荐相关的各类数据,进而能够实时利用在线数据进行更新推荐系统,又可以使用隐性偏好反馈数据提高推荐的准确度,从而保证推荐效果。
-
公开(公告)号:CN116664880A
公开(公告)日:2023-08-29
申请号:CN202310950013.4
申请日:2023-07-31
Applicant: 南昌大学 , 江西炬能物联技术研究中心有限公司 , 南昌大学新一代信息技术产业研究院
IPC: G06V10/70 , G06V10/44 , G06V10/764 , G06V10/774
Abstract: 本发明提供了一种深度伪造反取证图像的生成方法,涉及图像处理与多媒体信息安全技术领域。所述生成方法包括以下步骤:获取图像数据,并构建反取证模型的网络结构;将图像数据区分为训练集图像和测试集图像,将训练集图像输入生成网络并以预设权重提取视觉特征和取证特征,进行特征重组合成伪造图像;判别网络对伪造图像与训练集图像进行分类判别,并将学习到的权重回传至生成网络更新预设权重;重复进行达到预设迭代轮次后生成反取证模型;将测试集图像输入反取证模型,输出反取证图像。本发明生成的反取证图像能够提高取证检测器的检测难度,达到更强的反取证效果,从而能够协助应对新型伪造技术的取证挑战。
-
公开(公告)号:CN117614927B
公开(公告)日:2024-09-06
申请号:CN202311361072.4
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
IPC: H04L51/52 , H04L51/58 , G06Q50/00 , G06N3/0464 , G06N3/0442
Abstract: 本申请涉及数据处理技术领域,尤其涉及一种深度信息融合驱动的移动社交网络POI调度方法及系统,包括:感知层包括:云感知模块、边缘感知模块和深度表征学习模块;其中,云感知模块依据POI原始数据获得用户的显式特征,边缘感知模块依据POI原始数据获得用户间的隐式特征,深度表征学习模块基于深度学习方法,依据用户的显式特征和用户间的隐式特征,学习得到代表向量;计算层依据代表向量训练POI调度模型;应用层接收用户的POI调度请求,并且将用户的POI调度请求输入至训练好的POI调度模型中,从而得到POI调度结果。本申请可以提高移动社交网络(MSN)环境中的兴趣点(POI)调度的效果,并且使得移动社交网络(MSN)环境中的兴趣点(POI)的调度的难度较低。
-
公开(公告)号:CN117492856B
公开(公告)日:2024-07-23
申请号:CN202311343668.1
申请日:2023-10-17
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本申请提供一种金融物联网中信任评估的低延迟边缘计算卸载方法,该方法包括:响应于接收到评估请求信号,向用户端发送预评估模型;用户端根据接收到的预评估模型,采集用户信息;将采集的用户信息输入预评估模型中进行预评估,获得用户预评估结果,并根据用户预评估结果,为用户的评估任务匹配相应的评估模型;根据评估模型,对用户端的评估任务进行计算;其中,对用户端的评估任务进行计算的方法包括:判断评估任务是否需要卸载到不同的边缘计算节点进行计算,若是,则执行低延迟边缘计算卸载方法,否则,在用户端计算评估任务。本申请避免个人信用评估时用户个人隐私泄露,并为金融物联网的信任评估提供有效计算卸载方案以确保低延迟。
-
公开(公告)号:CN118237280B
公开(公告)日:2024-07-19
申请号:CN202410660114.2
申请日:2024-05-27
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院 , 江西炬能物联技术研究中心有限公司
Abstract: 本发明提供了一种光学影像测量装置,包括机台、第一照明源、第二照明源、六自由度机械臂,机台顶部设有图像采集器,机台底部设有检测台,第一照明源、第二照明源均位于检测台与图像采集器之间,第一照明源、第二照明源均能够移动并旋转,以在检测台与图像采集器之间的区域形成顶光照射模式和侧光照射模式,顶光照射模式为只其中一光源作用且其照射方向垂直于检测台表面所在平面,侧光照射模式为两光源同时作用且两者照射方向均以锐角倾斜于检测台表面所在平面;六自由度机械臂,设于机台一侧,用于抓取待测物体和调整其姿态。本发明可以根据待测物体特性对照明源的照射模式进行变换,并实现待测物体的待测面的自动调整和待测物体的自动分类。
-
公开(公告)号:CN118170035B
公开(公告)日:2024-07-19
申请号:CN202410607166.3
申请日:2024-05-16
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院 , 江西炬能物联技术研究中心有限公司
IPC: G05B13/04
Abstract: 本发明提供一种基于深度学习的自平衡机器人设计方法及系统,方法包括:根据自平衡机器人的三维数据进行数学建模;根据欧拉拉格朗日运动方程以对三个方向的欧拉拉格朗日运动方程进行线性化,并结合机器人自身物理属性得到空间平衡点,互补滤波器对传感器单元获得的信号数据进行滤波得到倾斜角;根据平衡点获得自平衡机器人的状态方程,根据状态方程并结合加权矩阵和倾斜角,通过深度学习网络对线性二次型调节器进行模型训练以获得训练后的线性二次型调节器;根据目标倾斜角与训练后的线性二次型调节器获得自平衡机器人的目标姿态调整数据以控制自平衡机器人。本申请解决了现有技术中的两轮自平衡机器人控制效果不好,鲁棒性较差的技术问题。
-
公开(公告)号:CN117908684B
公开(公告)日:2024-06-18
申请号:CN202410316740.X
申请日:2024-03-20
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院 , 江西炬能物联技术研究中心有限公司
IPC: G06F3/01 , G06T15/00 , G06T19/00 , G06F9/48 , G06F9/50 , H04L67/131 , H04L67/10 , H04L67/568
Abstract: 本发明提供了一种虚拟现实实现方法及系统,该方法包括:当实时检测到用户佩戴VR设备时,通过VR设备实时采集用户输入的交互数据,并实时检测出交互数据的交互类型;根据交互类型将交互数据传输至对应的边缘计算节点中,并通过边缘计算节点将交互数据输入至对应的AI引擎中,以通过AI引擎实时解析出交互数据中包含的前台内容;实时匹配出与前台内容对应的背景内容,并对前台内容以及背景内容进行图块合成处理,以生成对应的初始图片,前台内容和背景内容均包含有若干图块;将初始图片对应反馈至VR设备中,并通过VR设备对初始图片依次进行解码以及渲染处理,以生成对应的渲染图片。本发明能够实现画面高效率、低延迟的效果,对应提升了用户体验。
-
公开(公告)号:CN117573989A
公开(公告)日:2024-02-20
申请号:CN202311351738.8
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
IPC: G06F16/9536 , G06F16/9535 , G06F16/901 , G06F18/213 , G06F18/25 , G06Q50/00 , G06N3/042 , G06N3/084 , G16Y10/75
Abstract: 本申请公开了一种基于深度学习和物联网的模糊感知社交推荐方法及系统,其中,基于深度学习和物联网的模糊感知社交推荐方法,包括如下步骤:持久层获取初始数据,对初始数据进行处理,获得源数据,并存储;表示层从持久层中获取源数据,并根据获取的源数据构建混合社交图,并获得混合社交图的特征向量,并将特征向量输入至处理层,其中,混合社交图至少包括:用户子图和项目子图;特征向量至少包括:边的代表向量和节点的代表向量;处理层根据混合社交图的特征向量构建推荐模型,接收应用层发送的访问请求,利用推荐模型根据访问请求预测用户对物品的偏好反馈结果。本申请提高了建模效率和预测准确性。
-
-
-
-
-
-
-
-
-