一种深度信息融合驱动的移动社交网络POI调度方法及系统

    公开(公告)号:CN117614927B

    公开(公告)日:2024-09-06

    申请号:CN202311361072.4

    申请日:2023-10-19

    Abstract: 本申请涉及数据处理技术领域,尤其涉及一种深度信息融合驱动的移动社交网络POI调度方法及系统,包括:感知层包括:云感知模块、边缘感知模块和深度表征学习模块;其中,云感知模块依据POI原始数据获得用户的显式特征,边缘感知模块依据POI原始数据获得用户间的隐式特征,深度表征学习模块基于深度学习方法,依据用户的显式特征和用户间的隐式特征,学习得到代表向量;计算层依据代表向量训练POI调度模型;应用层接收用户的POI调度请求,并且将用户的POI调度请求输入至训练好的POI调度模型中,从而得到POI调度结果。本申请可以提高移动社交网络(MSN)环境中的兴趣点(POI)调度的效果,并且使得移动社交网络(MSN)环境中的兴趣点(POI)的调度的难度较低。

    一种金融物联网中信任评估的低延迟边缘计算卸载方法

    公开(公告)号:CN117492856B

    公开(公告)日:2024-07-23

    申请号:CN202311343668.1

    申请日:2023-10-17

    Abstract: 本申请提供一种金融物联网中信任评估的低延迟边缘计算卸载方法,该方法包括:响应于接收到评估请求信号,向用户端发送预评估模型;用户端根据接收到的预评估模型,采集用户信息;将采集的用户信息输入预评估模型中进行预评估,获得用户预评估结果,并根据用户预评估结果,为用户的评估任务匹配相应的评估模型;根据评估模型,对用户端的评估任务进行计算;其中,对用户端的评估任务进行计算的方法包括:判断评估任务是否需要卸载到不同的边缘计算节点进行计算,若是,则执行低延迟边缘计算卸载方法,否则,在用户端计算评估任务。本申请避免个人信用评估时用户个人隐私泄露,并为金融物联网的信任评估提供有效计算卸载方案以确保低延迟。

    一种金融物联网中信任评估的低延迟边缘计算卸载方法

    公开(公告)号:CN117492856A

    公开(公告)日:2024-02-02

    申请号:CN202311343668.1

    申请日:2023-10-17

    Abstract: 本申请提供一种金融物联网中信任评估的低延迟边缘计算卸载方法,该方法包括:响应于接收到评估请求信号,向用户端发送预评估模型;用户端根据接收到的预评估模型,采集用户信息;将采集的用户信息输入预评估模型中进行预评估,获得用户预评估结果,并根据用户预评估结果,为用户的评估任务匹配相应的评估模型;根据评估模型,对用户端的评估任务进行计算;其中,对用户端的评估任务进行计算的方法包括:判断评估任务是否需要卸载到不同的边缘计算节点进行计算,若是,则执行低延迟边缘计算卸载方法,否则,在用户端计算评估任务。本申请避免个人信用评估时用户个人隐私泄露,并为金融物联网的信任评估提供有效计算卸载方案以确保低延迟。

Patent Agency Ranking