机器学习方法、装置、设备、联邦学习系统及存储介质

    公开(公告)号:CN117808126B

    公开(公告)日:2024-05-28

    申请号:CN202410230008.0

    申请日:2024-02-29

    Abstract: 本发明公开了一种机器学习方法、装置、设备、联邦学习系统及存储介质,属于边缘计算领域,用于在模型聚合过程中识别并剔除恶意用户的模型数据,解决了恶意用户攻击导致模型精度下降的问题。一方面边缘计算设备可以在簇内选择与自身的相关性达标的边缘计算设备的模型参数对自身的模型参数进行更新,另一方面簇头在进行簇内聚合时可以排除异常的边缘计算设备的模型参数,通过两层的风险识别,可以精准的识别并忽略异常的模型参数,排除了风险,有利于提升最终得到的全局网络模型的性能,使中心服务器在工业设备故障预测、网络安全问题识别与图片分类时发挥最优的效果,也避免了全局网络模型学习到恶意用户希望的特定行为。

    机器学习方法、装置、设备、联邦学习系统及存储介质

    公开(公告)号:CN117808126A

    公开(公告)日:2024-04-02

    申请号:CN202410230008.0

    申请日:2024-02-29

    Abstract: 本发明公开了一种机器学习方法、装置、设备、联邦学习系统及存储介质,属于边缘计算领域,用于在模型聚合过程中识别并剔除恶意用户的模型数据,解决了恶意用户攻击导致模型精度下降的问题。一方面边缘计算设备可以在簇内选择与自身的相关性达标的边缘计算设备的模型参数对自身的模型参数进行更新,另一方面簇头在进行簇内聚合时可以排除异常的边缘计算设备的模型参数,通过两层的风险识别,可以精准的识别并忽略异常的模型参数,排除了风险,有利于提升最终得到的全局网络模型的性能,使中心服务器在工业设备故障预测、网络安全问题识别与图片分类时发挥最优的效果,也避免了全局网络模型学习到恶意用户希望的特定行为。

Patent Agency Ranking