-
公开(公告)号:CN116259067B
公开(公告)日:2023-09-12
申请号:CN202310538334.3
申请日:2023-05-15
Applicant: 济南大学 , 济南市城镇化与村镇建设服务中心
IPC: G06V30/422 , G06V30/148 , G06V30/19 , G06V30/18 , G06V30/14 , G06V10/82
Abstract: 本发明提出了一种高精度识别PID图纸符号的方法,涉及PID图纸符号识别领域。本发明提出PCSC_CBAM注意力机制,将该机制引入到YOLOv5中Neck里去,提高YOLOv5网络对符号识别的准确率。对高分辨率PID图纸进行数据增强,然后使用滑动窗口对高分辨率PID图纸进行分割,得到N张小图片。使用改进的YOLOv5网络用于对N张图片符号识别,实现符号的精准分类以及模糊定位;之后将N张图片拼接回高分辨率图像进行非极大值抑制。遍历拼接后的高分辨率图像符号识别的结果,从高分辨率图像中裁切仅包含当前符号的图像,对其使用Canny边缘检测和形态学处理得到符号的精确位置,提高PID图纸符号识别的准确率。
-
公开(公告)号:CN114863464A
公开(公告)日:2022-08-05
申请号:CN202210798533.3
申请日:2022-07-08
Applicant: 济南大学
IPC: G06V30/422 , G06V30/418 , G06V30/24 , G06V30/19
Abstract: 本发明公开了一种PID图纸图件信息的二阶识别方法,涉及图像识别图像分类领域,尤其是PID图纸图件的识别问题。本发明提出结合传统机器学习和深度学习强监督实现对PID图纸图件的准确识别和分类,针对PID图件中存在的类内差异较小的问题,第一阶段采用归一化相关系数、HOG特征提取相关性计算的方式实现按图件共有的基础几何图形特征的初分类,第二阶段采用深度学习强监督的方式,对相似度较高的图件添加关键部位重标注,提模型对类内差异部位的感知能力来改善模型对图件分类和识别的性能,从而提升PID图纸图件信息在实际工程中的应用效率,提升企业数字化交付的能力。
-