-
公开(公告)号:CN111597367A
公开(公告)日:2020-08-28
申请号:CN202010418065.3
申请日:2020-05-18
Applicant: 河北工业大学
IPC: G06F16/51 , G06F16/583 , G06N3/04 , G06N3/08
Abstract: 本发明为一种基于视图和哈希算法的三维模型检索方法,该方法包括获取不同三维模型不同角度拍摄的多张视图图片,并归一化;构建基于AlexNet的卷积神经网络:在5层卷积层后经视图层连接两层全连接层,并在最后一个全连接层后加入哈希层,将高维特征转为低维的哈希码,转化过程中设计量化损失函数来减少哈希码的量化误差;利用已有三维模型数据集训练基于AlexNet的卷积神经网络,每个模型的特征用经过训练好的网络学习到的哈希特征表示;利用汉明距离计算任意给定查询三维模型与三维模型数据库中的三维模型的相似性,选定汉明距离最小的前几个模型作为结果输出到检索列表,能提高三维模型的检索效率。
-
公开(公告)号:CN104008564B
公开(公告)日:2018-01-12
申请号:CN201410269983.9
申请日:2014-06-17
Applicant: 河北工业大学
IPC: G06T13/40
Abstract: 本发明一种人脸表情克隆方法,涉及三维(3D)图像的加工,是一种基于运动捕捉数据的人脸表情克隆方法,一、预先捕捉一系列人脸面部运动序列;二、人脸面部生气、厌恶、恐惧、高兴、悲伤和吃惊六个基本表情信息的运动捕捉;三、对运动捕捉到的人脸面部六个基本表情信息进行处理;四、构建源面部和目标面部关键模型、五、选取四十一个人脸面部特征点;六、人脸表情的转移;七、生成人脸克隆表情。本发明克服了现有技术中均一权值保真度低和余切权值计算不稳定的问题以及运动捕捉设备有较高的要求和处理速度较慢的缺陷。
-
公开(公告)号:CN107092931A
公开(公告)日:2017-08-25
申请号:CN201710269440.0
申请日:2017-04-24
Applicant: 河北工业大学
CPC classification number: G06K9/6256 , G06K9/4671 , G06K9/6269
Abstract: 本发明一种奶牛个体识别的方法,涉及图像数据处理中的图像识别方法,步骤是:奶牛视频数据采集,将奶牛视频数据转化为图片序列并进行归一化,利用小波变换提取奶牛个体的四个不同分量特征,利用改进的KPCA方法进行四个不同分量特征降维,加权融合四个不同分量特征,将图像特征数据划分为训练集和测试集,分别进行SVM训练和SVM测试,最终识别出奶牛个体;该方法克服了现有技术中,奶牛个体的智能识别方法大都仍采用通用的图像处理方法,没有针对奶牛个体特点,尤其没有根据奶牛躯干黑白花纹形状的唯一性来选取出适合的图像处理方法,导致奶牛个体识别准确率低的缺陷。
-
公开(公告)号:CN106778902A
公开(公告)日:2017-05-31
申请号:CN201710000628.5
申请日:2017-01-03
Applicant: 河北工业大学
Abstract: 本发明基于深度卷积神经网络的奶牛个体识别方法,涉及图像数据处理中的图像识别方法,是一种采用深度学习当中卷积神经网络提取特征,结合对奶牛纹理特征实现对奶牛个体有效识别的方法,步骤是:奶牛数据的采集;对训练集和测试集的预处理;设计卷积神经网络;训练卷积神经网络;生成识别模型;利用识别模型识别奶牛个体。本发明方法克服了采用图像处理技术对奶牛图像进行处理的现有算法单一,没有充分利用奶牛本身所具有的条纹特点来与图像处理和模式识别技术进行很好的结合,导致奶牛识别准确率低的缺陷。
-
公开(公告)号:CN105139039A
公开(公告)日:2015-12-09
申请号:CN201510631089.6
申请日:2015-09-29
Applicant: 河北工业大学
CPC classification number: G06K9/6269 , G06K9/00315 , G06K9/00744 , G06K9/4671
Abstract: 本发明视频序列中人脸微表情的识别方法,涉及用于识别图形的记录载体的处理,是一种利用HLACLF-TOP算法提取人脸微表情序列的动态时空纹理特征方法,步骤是:人脸微表情视频欧拉放大;人脸微表情图像预处理;利用HLACLF-TOP算法提取人脸微表情序列的动态时空纹理特征;利用ELM分类器进行训练和预测。本发明方法克服了现有技术中由于人脸微表情变化幅度小造成微表情难以识别的缺陷。
-
公开(公告)号:CN104008564A
公开(公告)日:2014-08-27
申请号:CN201410269983.9
申请日:2014-06-17
Applicant: 河北工业大学
IPC: G06T13/40
Abstract: 本发明一种人脸表情克隆方法,涉及三维(3D)图像的加工,是一种基于运动捕捉数据的人脸表情克隆方法,一、预先捕捉一系列人脸面部运动序列;二、人脸面部生气、厌恶、恐惧、高兴、悲伤和吃惊六个基本表情信息的运动捕捉;三、对运动捕捉到的人脸面部六个基本表情信息进行处理;四、构建源面部和目标面部关键模型;五、选取四十一个人脸面部特征点;六、人脸表情的转移;七、生成人脸克隆表情。本发明克服了现有技术中均一权值保真度低和余切权值计算不稳定的问题以及运动捕捉设备有较高的要求和处理速度较慢的缺陷。
-
-
-
-
-