基于多体系统传递矩阵法的舵面系统非线性颤振模型建模方法

    公开(公告)号:CN110889169B

    公开(公告)日:2020-10-16

    申请号:CN201911155418.9

    申请日:2019-11-22

    Applicant: 扬州大学

    Abstract: 本发明公开了一种基于多体系统传递矩阵法的舵面系统非线性颤振模型建模方法,包括以下过程:基于多体系统传递矩阵法推导弯扭耦合梁传递矩阵;建立系统的总传递方程,并求解圆频率和振型;使用Theodorsen非定常流理论,建立舵面系统的运动控制方程;考虑间隙非线性和摩擦非线性,建立基于MSTMM的体动力学方程,得到系统非线性颤振模型;求解系统非线性颤振模型,得到舵面系统振动时域响应。本发明解决了线性颤振计算方法不能准确预测非线性系统颤振响应的问题,实现舵面系统非线性颤振响应的快速求解。

    一种输电导线气动特性风洞测量方法和装置

    公开(公告)号:CN111579196A

    公开(公告)日:2020-08-25

    申请号:CN202010473064.9

    申请日:2020-05-29

    Applicant: 扬州大学

    Abstract: 本发明公开了一种输电导线气动特性风洞测量方法和装置,借鉴风洞实验及空气动力学知识,包括以下步骤:(1)确定气动特性风洞实验所用导线型号及试验工况;(2)设计制作风洞实验所用可移动式格栅,并确定实验装置布置位置;(3)开启风洞,流场测试并数据处理获得对应的湍流特性参数和流速分布;(4)设计输电导线气动特性风洞测量装置,并在风洞中安装调试;(5)开启风洞,测试不同工况下输电导线气动力特性记录数据,直至所有工况都测试完毕;(6)对比各工况下气动力数据,分析其中变化规律,完成输电导线气动特性试验;该方法可以精确采集各种风速及风向角下的输电导线模型的气动参数,提高试验效率,具有较强的工程价值和实际意义。

    小功率风力机气动特性的测量方法

    公开(公告)号:CN110500240B

    公开(公告)日:2020-06-30

    申请号:CN201910921865.4

    申请日:2019-09-27

    Applicant: 扬州大学

    Abstract: 本发明涉及一种小功率风力机气动特性的测量方法,依次包括如下步骤:⑴在风洞中安装风力机支架,在其顶部安装六分量天平;⑵在六分量天平上方安装共同底座,在共同底座的前部上方安装风力机底座;⑶在风力机底座的前部安装风力机,后部安装扭矩仪且与风机轴的后端通过联轴器一相连接;⑷在共同底座的后部上方安装三相异步发电机且与扭矩仪的后轴端通过联轴器二相连接;⑸安装电气系统;⑹启动风洞;⑺采集当前风速及不同转速下风力机的六种载荷分量、扭矩、叶片各测点的表面压力;⑻改变风洞风速,待风洞风速稳定后,重复步骤⑺,直至所需测量的各风速下均完成测量。该方法可以精确采集各种风速及转速下的风力机六种载荷分量和扭矩等参数。

    一种安装于风力机塔筒的降噪装置及风力机

    公开(公告)号:CN111237137A

    公开(公告)日:2020-06-05

    申请号:CN202010114523.4

    申请日:2020-02-25

    Applicant: 扬州大学

    Abstract: 本发明公开了风力机降噪装置技术领域,具体涉及一种安装于风力机塔筒的降噪装置及风力机,旨在解决现有技术中叶片噪声经塔筒反射后增大了叶片噪声的声压级同时叶片噪声引发塔筒振动产生二次噪声的技术问题。降噪组件通过安装组件安装在塔筒上;安装组件包括上支撑环板和下支撑环板,上支撑环板和下支撑环板分别通过螺栓与塔筒的安装法兰连接,下支撑旋转环板与下支撑环板滑动连接,降噪组件安装在上支撑环板和下支撑旋转环板之间且降噪组件随下支撑旋转环板同步绕塔筒的轴线转动;通过在风力机塔筒上设置降噪装置,减少了风力机塔筒对叶片噪声的反射,同时减少了由叶片噪声引发风力机塔筒振动产生的二次噪声。

    基于多体系统传递矩阵法的舵面系统非线性颤振模型建模方法

    公开(公告)号:CN110889169A

    公开(公告)日:2020-03-17

    申请号:CN201911155418.9

    申请日:2019-11-22

    Applicant: 扬州大学

    Abstract: 本发明公开了一种基于多体系统传递矩阵法的舵面系统非线性颤振模型建模方法,包括以下过程:基于多体系统传递矩阵法推导弯扭耦合梁传递矩阵;建立系统的总传递方程,并求解圆频率和振型;使用Theodorsen非定常流理论,建立舵面系统的运动控制方程;考虑间隙非线性和摩擦非线性,建立基于MSTMM的体动力学方程,得到系统非线性颤振模型;求解系统非线性颤振模型,得到舵面系统振动时域响应。本发明解决了线性颤振计算方法不能准确预测非线性系统颤振响应的问题,实现舵面系统非线性颤振响应的快速求解。

    一种复杂地形风电场的噪声分布预测方法

    公开(公告)号:CN110110457A

    公开(公告)日:2019-08-09

    申请号:CN201910396473.0

    申请日:2019-05-13

    Applicant: 扬州大学

    Abstract: 一种复杂地形风电场的噪声分布预测方法,主要包括:首先,基于工程尾流模型,生成考虑尾流影响的复杂地形上的风力机气动噪声声源;然后,提出“边界射线网格法”提高整个噪声分布预测计算效率;最后,通过复杂地形的PE抛物线噪声传播方程求解,进行噪声的声功率对数叠加,获得复杂地形风电场的噪声分布情况。本发明创新提出了“边界射线网格法”,在具有较好准确性的基础上,又克服了目前噪声预测方法在复杂地形上计算量较大的问题,提高了风电场噪声预测精度和计算效率。由于风电场的大规模化以及向复杂地形发展的趋势,风电场气动噪声影响越来越严重,本发明对于风电场噪声预测具有重要的应用前景。

    一种平坦地形风电场的噪声预测和优化布局方法

    公开(公告)号:CN109784544A

    公开(公告)日:2019-05-21

    申请号:CN201811567811.4

    申请日:2018-12-21

    Abstract: 本发明提供了一种平坦地形风电场的噪声预测和优化布局方法。所述平坦地形风电场的噪声预测和优化布局方法包括如下步骤:步骤一:基于风电场工程尾流模型,生成风电场中每台风力机的来流风速,计算出每台风力机气动噪声声源;步骤二:将三维PE抛物线方程进行简化,基于单台风力机的二维噪声传播方程,计算出风力机噪声传播数据库;步骤三:根据步骤二得到的风力机噪声传播数据库,利用风电场噪声传播的多维插值公式,进行风电场噪声数值模拟计算;步骤四:采用最大声压边界取值方法,优化出满足声压级等高线的风电场优化布局。

    一种改进型水平轴风力机及其使用方法、设计方法

    公开(公告)号:CN107882678B

    公开(公告)日:2018-09-14

    申请号:CN201711120180.7

    申请日:2017-11-13

    Applicant: 扬州大学

    Abstract: 一种改进型水平轴风力机及其使用方法、设计方法,主要包括提高风力机发电量装置,以及采用浸入边界方法和致动理论耦合的混合式设计方法。随着风力机大型化发展,风轮的叶根附近功率损失越来越明显,通过设计一个可前后移动和分离合并的导流圆盘装置,改变风轮叶根附近流场,达到提高风力机发电功率的作用;面对该装置的气动外形和尺寸是其的关键设计问题,若采用工程方法,存在精度低缺点,若采用传统计算流体力学方法,计算量大,因此,本发明还针对该装置的设计,提出浸入边界法混合致动理论的数值模拟方法,保证了数值模拟计算精度的同时,可以大大提高计算效率。

    基于差分进化逆辨识的尾缘襟翼内模PID控制参数的优化方法

    公开(公告)号:CN107942681A

    公开(公告)日:2018-04-20

    申请号:CN201711390563.6

    申请日:2017-12-21

    Applicant: 扬州大学

    Abstract: 基于差分进化逆辨识的尾缘襟翼内模PID控制参数的优化方法,属于风力机叶片高效安全运行控制技术领域。首先在基于尾缘襟翼的智能叶片系统的输入端和输出端分别收集用于辨识的采样数据;然后利用采样数据和差分进化算法对智能叶片系统的等效模型进行优化辨识;再通过差分进化算法对智能叶片系统的等效逆模型进行优化辨识;最后利用辨识得到的最优模型参数和最优逆模型参数获取内模PID控制器的最优控制参数。本发明能够快速、准确地获得尾缘襟翼内模PID控制的优化参数,从而达到提高尾缘襟翼控制效果的目的。

    一种改进型水平轴风力机及其使用方法

    公开(公告)号:CN107905941A

    公开(公告)日:2018-04-13

    申请号:CN201711120677.9

    申请日:2017-11-13

    Applicant: 扬州大学

    Abstract: 一种改进型水平轴风力机及其使用方法,包括塔架、机舱、主轮毂、风轮叶片和收拢机构;机舱安装在塔架的顶端,主轮毂安装在机舱的前端,多片风轮叶片均匀地围绕着主轮毂布置,风轮叶片通过收拢机构与主轮毂相连,收拢机构使得风轮叶片能够在叶根处旋转并向机舱靠拢,从而使风轮叶片的展向垂直于风轮旋转平面。当风力机遭受强风或者台风时,通过改进风轮叶片和收拢机构,实现风轮叶片在叶根附近折起旋转,向机舱靠拢,叶片展向与来流风速方向尽量保持平行,减弱风力机的风剪切不稳定荷载,同时大大减少风力机的风荷载面积,从而减少水平轴风力机停机后受到的载荷,对提高风力机的抗台风能力,保证风力机寿命具有重要意义。

Patent Agency Ranking