-
公开(公告)号:CN116996392A
公开(公告)日:2023-11-03
申请号:CN202311254711.7
申请日:2023-09-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/12 , H04L41/142 , H04L41/0677 , H04L43/0876 , H04L43/50
Abstract: 本发明公开了一种基于加权有向图算法的流量路径重构方法及系统,涉及计算机网络技术领域。该方法包括步骤:采集待发送的流量数据,并对流量数据进行格式转化;根据流量数据的报文头格式,对流量数据进行提取;根据每一条报文的采样数据据创建子路径,并对子路径进行去重和排序;确定目标流路径,将其余子路径并行生成并进行对比,生成旁路路径;创建单向加权有向图,对目标流路径和旁路路径分别赋值;根据每条路径的路径终点进行权值更新,根据更新后的路径权值重新构造加权有向图;将重新构造的加权有向图中权重最大的路径作为重构路径。本发明能够实现更精确、全面的流量路径重构,以助于网络监控、故障定位和性能优化。
-
公开(公告)号:CN115953303A
公开(公告)日:2023-04-11
申请号:CN202310238326.7
申请日:2023-03-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/40 , G06V10/77 , G06V10/774 , G06V10/80
Abstract: 本发明属于图像处理相关技术领域,本发明提出了结合通道注意力的多尺度图像压缩感知重构方法及系统,包括:将原始图像转换为灰度图像,对灰度图像进行多尺度分块采样得到采样值,对所述采样值通过第一通道注意力模块计算输出特征的多通道融合矩阵,将所述多通道融合矩阵与采样值运算处理得到初始重建图像;将初始重建图像经过特征提取后依次经过第二通道注意力模块、多尺寸残差模型进行特征的多尺度融合,得到深度重建图像;将所述初始重建图像和深度重建图像进行结合,得到重构图像。通过图像初始重建和深度重建,在提取深度特征的同时也考虑了浅层特征对重构的影响,使得重构效果好。
-
公开(公告)号:CN118761063B
公开(公告)日:2025-03-18
申请号:CN202411251863.6
申请日:2024-09-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0455 , G06N3/082 , G06N3/042
Abstract: 本公开提供了一种基于图表示和稀疏Transformer的高阶漏洞检测方法及系统,涉及信息安全检测技术领域,包括:获取模块程序源代码的字符流数据;对所述字符流数据进行词法分析,将全局变量或用户控制的输入的变量持久化存储的变量信息保存到数据表中;生成每个源代码的代码属性图,通过查找数据表持久化存储的变量信息,生成程序之间的持久化存储数据流关系;将持久化存储数据流关系输入GNN模块中学习图中节点的信息,得到节点的嵌入向量;将节点的嵌入向量再输入到具有稀疏注意力Transformer模块中,利用基于阈值的剪枝句子修剪算法在Transformer中逐层修剪句子,并进行注意力稀疏化,自适应地删除不相关句子,将高阶漏洞转化为低阶漏洞。
-
公开(公告)号:CN119622735A
公开(公告)日:2025-03-14
申请号:CN202411665446.6
申请日:2024-11-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06F8/71 , G06F8/75 , G06F18/25 , G06N3/0455 , G06N3/0495 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本公开涉及漏洞检测技术领域,提出了一种基于语义感知稀疏注意力的细粒度漏洞检测方法及系统,包括:解析待检测源代码,生成抽象语法树、控制流图和程序依赖图;将抽象语法树、控制流图和程序依赖图的图表示进行加权融合,整合为代码属性图;针对代码属性图,采用融合稀疏注意力、可学习Token剪枝方法以及Top‑k交互频率结合的语义感知稀疏注意力方法处理,得到Token注意力分数;基于得到的Token注意力分数,累加代码每行中每个Token的注意力分数,检测确定漏洞代码所在的语句。本公开的检测方法能够有效提升对代码语义信息的建模和结构化依赖关系的捕捉能力,同时显著降低计算复杂度。
-
公开(公告)号:CN118585247A
公开(公告)日:2024-09-03
申请号:CN202410689368.7
申请日:2024-05-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/30
Abstract: 本发明涉及计算机技术领域,提供了一种缓存淘汰与多处理器指令集向机器指令转换方法及系统。缓存淘汰方法,包括:接收目标机器指令存储请求;若待请求的数据不在预设的缓存中,则判断缓存是否已满,若未满,则直接将目标机器指令存储至缓存中;否则,采用评分函数计算缓存中每个缓存块的评分,淘汰评分最低的缓存块;其中,所述评分函数为:待评分缓存块被访问的总次数除以当前时间戳与该缓存块最后一次被访问的时间戳的差。
-
公开(公告)号:CN118427704A
公开(公告)日:2024-08-02
申请号:CN202410854924.1
申请日:2024-06-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/2413 , G06F18/214 , G06F18/2433 , G06F18/21 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及基于GRU的变分自编码器的攻击和防御方法及系统,属于工业控制系统攻击防御技术领域。包括:将数据集划分为训练集和测试集;对训练集和测试集进行数据预处理;利用训练好的GRU模型来学习各个传感器序列之间的约束关系;在测试数据中对传感器加入不同的扰动,利用所学到的各个传感器序列之间的约束关系并结合FGSM攻击方法来生成对抗样本;采用处理好的数据集对VAE异常检测模型进行训练,得到VAE异常检测模型的训练的重构误差;将VAE异常检测模型训练的重构误差与权重矩阵相结合,得到优化重构误差,并且采用优化重构误差来检测是正常或者异常。本发明提升了模型鲁棒性,免受针对最弱特征的攻击而且可解释性强。
-
公开(公告)号:CN118094550B
公开(公告)日:2024-07-23
申请号:CN202410486741.9
申请日:2024-04-23
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种基于Bert与监督对比学习的动态恶意软件检测方法,属于恶意软件检测技术领域。将预处理后的API调用信息中的字符型信息进行编码,基于预编译的Bert模型得到字符型API调用特征向量;将预处理后的API调用信息中的数值型信息进行编码,得到数值型API调用特征向量;计算API调用信息中字符型参数的统计特征,得到API字符型参数统计特征向量;对上述特征向量进行拼接,基于拼接后的API调用特征,结合训练好的检测模型,得到恶意软件检测结果;其中,检测模型的预训练阶段通过最小化监督对比损失函数更新检测模型权重;本发明提高了检测模型的泛化能力,同时减少了对应负样本挖掘的依赖。
-
公开(公告)号:CN118036006B
公开(公告)日:2024-07-05
申请号:CN202410436840.6
申请日:2024-04-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/213 , G06F18/241 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于敏感API的恶意软件检测方法、系统、设备及介质,其属于软件检测技术领域,包括:对待检测的APK文件进行反编译,并从中提取API调用图、操作码以及包名;对API调用图中的每个节点进行分类,获得内部调用节点和外部调用节点;其中,对于内部调用节点采用操作码进行特征表示,外部调用节点采用API所在的包名进行特征表示;基于预设敏感API数据集,获取满足预设要求的若干敏感API,并基于所述若干敏感API对分类后的API调用图中的节点进行重要性标记,获得增强后的API调用图;将所述增强后的API调用图输入预先训练的基于深度学习的安卓恶意软件检测模型中,获得检测结果。
-
公开(公告)号:CN118036005B
公开(公告)日:2024-07-02
申请号:CN202410431681.0
申请日:2024-04-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F16/35 , G06F40/216 , G06N3/042
Abstract: 本发明提供了基于精简调用图的恶意应用检测方法、系统、设备及介质,其属于软件检测技术领域,包括:基于待检测应用程序的行为特征数据,进行函数调用图构建;基于预先构建的敏感API列表,从函数调用图中筛选出存在于敏感API列表中的外部调用函数节点和与所述外部调用函数节点直接或间接连接的节点,作为第一集合,以及与存在于第一集合中的节点直接或间接连接的内部自定义函数节点,作为第二集合;计算函数调用图中各节点的节点中心性,并以节点中心性大于预设阈值的节点,构建第三集合;基于获得的第一集合、第二集合及第三集合,构建精简调用图;基于精简调用图结合预先训练的基于深度学习的恶意软件检测模型,获得恶意软件检测结果。
-
公开(公告)号:CN118114040A
公开(公告)日:2024-05-31
申请号:CN202410089465.2
申请日:2024-01-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/214 , G06F18/25 , G06F18/211 , G06F18/2433 , G06N3/094 , G06N3/0455 , G06N3/045 , G06N3/042
Abstract: 本发明提出了一种对抗样本生成方法及系统,涉及工业控制系统对抗样本攻击研究技术领域,采集工业控制系统正常运行状态下的工控时序数据;将工控时序数据输入到训练好的时序数据预测模型中,生成初始对抗样本;利用数据类型规则检查器和不变量规则检查器对初始对抗样本进行优化,得到最终的对抗性样本;时序数据预测模型采用金字塔注意力结构充分挖掘时间序列数据的变化规律,结合CBAM注意力模块,对时间特征和空间特征添加注意力机制使其专注于重要特征。本发明采用时序数据预测模型,生成初始对抗样本,并通过不变量规则检查器和数据类型检查器来优化对抗性样本,利用深度学习模型和规则检查器的优势来提高对抗性样本的质量和可转移性。
-
-
-
-
-
-
-
-
-