-
公开(公告)号:CN117875195B
公开(公告)日:2024-06-14
申请号:CN202410283609.8
申请日:2024-03-13
Applicant: 大连理工大学
IPC: G06F30/27 , G16C60/00 , G06N3/0442 , G06F119/04 , G06F113/26
Abstract: 一种面向结构寿命评估的裂纹扩展孪生预示方法,包括:首先,构建三维仿真模型开展疲劳试验,获取裂纹扩展历史阶段样本数据和未来时程数据,更新仿真所需材料常数;其次,开展裂纹扩展数值仿真获取裂纹扩展历史阶段仿真样本数据和未来时程仿真数据;再次,建立多源数据差值时序预测模型;最后,根据未来时程仿真数据的循环加载次数计算对应的未来时程多源数据差值,将其与未来时程裂纹扩展长度仿真数据一一对应叠加,构建裂纹扩展孪生预示模型,实现未来时程裂纹扩展长度高精度孪生预示。本发明通过多源数据融合孪生,提升未来时程裂纹扩展长度预示精度,以较少的载荷循环次数达到全寿命周期疲劳试验的效果,对缩短结构疲劳试验周期有重要意义。
-
公开(公告)号:CN117763927B
公开(公告)日:2024-05-17
申请号:CN202410195563.4
申请日:2024-02-22
Applicant: 大连理工大学
IPC: G06F30/23
Abstract: 一种几何‑网格孪生驱动的仿真模型自动更新方法,属于数字孪生领域,步骤:首先,对基准几何模型进行处理获得基准仿真模型和修改后的几何模型;其次,基于基准几何模型和修改后的几何模型建立对应的两个曲面网格模型,进行映射获得两个平面网格模型;第三,根据节点编号对应关系获得两个曲面网格模型的控制点集合;第四,训练两个控制点集的坐标关系,获得二者之间映射关系;最后,基于映射关系对基准仿真模型中的有限元节点的坐标进行变换,实现修改后的网格模型的孪生,完成仿真模型自动更新。本发明解决了仿真模型中由于部分几何发生修改,仿真模型进行更新时步骤繁琐、迭代速度慢的缺点,具有高效性和鲁棒性,便于开展后续的结构优化设计。
-
公开(公告)号:CN117892639A
公开(公告)日:2024-04-16
申请号:CN202410295379.7
申请日:2024-03-15
Applicant: 大连理工大学
IPC: G06F30/27 , G06F18/15 , G06F18/20 , G06F18/2433 , G06F18/25 , G06F18/27 , G06N3/045 , G06N3/0442 , G06N3/0464 , G06N3/084 , G06N3/0985 , G06N20/20 , G06F119/14
Abstract: 本发明提供一种飞参数据驱动的飞行器结构寿命预测方法,属于飞行器结构健康监测及管理领域,步骤:1)采集飞行器飞参数据和结构关键部位应变数据构建数据集;2)对原始数据进行处理;3)自动提取关键部位应变的相关飞参及特征;4)基于集成深度学习模型建立相关飞参及特征到关键部位应变的高精度映射模型;5)将实时采集的飞参输入映射模型预测关键部位应变历程,利用疲劳寿命评估方法和损伤累积理论,预测结构剩余寿命。本发明自动化智能化程度高;以飞参数据作为原始输入,通过人工智能算法和大数据分析技术,实现飞行器结构剩余寿命的实时预测,解决缺乏面向实际飞行状态的飞行器结构关键部位的高精度寿命损耗评估手段等问题。
-
公开(公告)号:CN117875138A
公开(公告)日:2024-04-12
申请号:CN202410279818.5
申请日:2024-03-12
Applicant: 大连理工大学
IPC: G06F30/23 , G06F30/15 , G06F30/27 , G06F119/04 , G06F119/14
Abstract: 一种机理与数据融合驱动的飞行器结构寿命预测方法,属于飞行器结构健康监测及管理相关技术领域,步骤:首先,建立飞行器结构高保真多尺度有限元模型,求解整体模型和局部细节模型强度力学响应;其次,针对不同结构寿命问题,建立多个对应的机理模型;第三,在飞行器上布置多种传感器测量全寿命周期的力学响应数据,构建数据集;第四,训练力学响应数据与剩余寿命间的隐含关系,建立数据驱动模型;最后,基于机理模型和数据驱动模型分别进行剩余寿命预测,利用多种融合策略实现数据驱动模型对机理模型的实时动态修正。本发明能够充分发挥机理模型和数据驱动模型的技术优势,具有较高的实时性和鲁棒性,便于后续开展飞行器结构全寿命周期健康管理。
-
公开(公告)号:CN117807823A
公开(公告)日:2024-04-02
申请号:CN202311697398.4
申请日:2023-12-12
Applicant: 大连理工大学
IPC: G06F30/23 , G06F30/27 , G06F119/14
Abstract: 一种面向数字孪生建模的复杂曲面传感器布局方法,步骤:1)建立复杂曲面结构的有限元模型,划分有限元网格,开展仿真分析;2)提取仿真分析结果,将复杂曲面节点坐标降维映射至平面;3)划分背景网格,将背景网格节点作为候选点,根据曲面结构特征干涉与候选点的距离进行候选点筛选,获得可行候选点;4)对可行候选点进行编码,并将可行候选点取值作为优化变量;5)将可行候选点位置处的仿真数据作为虚拟传感器数据,通过虚拟传感器数据拟合代理模型,并定义布局优化的适应度函数;6)利用优化算法对优化变量进行寻优,获得使适应度函数最优的一组编码值。7)对编码值进行解码,并绘制传感器布局结果。本发明操作简便、优化效率较高、能够获得有限数目下具有高精度数字孪生的传感器布局方案;通过背景网格划分和候选点筛选,解决传统方法网格依赖强、优化布局不满足真实安装需求等问题。
-
公开(公告)号:CN117763927A
公开(公告)日:2024-03-26
申请号:CN202410195563.4
申请日:2024-02-22
Applicant: 大连理工大学
IPC: G06F30/23
Abstract: 一种几何‑网格孪生驱动的仿真模型自动更新方法,属于数字孪生领域,步骤:首先,对基准几何模型进行处理获得基准仿真模型和修改后的几何模型;其次,基于基准几何模型和修改后的几何模型建立对应的两个曲面网格模型,进行映射获得两个平面网格模型;第三,根据节点编号对应关系获得两个曲面网格模型的控制点集合;第四,训练两个控制点集的坐标关系,获得二者之间映射关系;最后,基于映射关系对基准仿真模型中的有限元节点的坐标进行变换,实现修改后的网格模型的孪生,完成仿真模型自动更新。本发明解决了仿真模型中由于部分几何发生修改,仿真模型进行更新时步骤繁琐、迭代速度慢的缺点,具有高效性和鲁棒性,便于开展后续的结构优化设计。
-
公开(公告)号:CN112417602A
公开(公告)日:2021-02-26
申请号:CN202011366700.4
申请日:2020-11-30
Applicant: 大连理工大学
IPC: G06F30/15 , G06F30/23 , G06F30/27 , G06F111/04 , G06F111/06
Abstract: 本发明提供一种薄壁加筋结构的筋条布局、形状与尺寸协同设计方法,属于航空航天结构加筋薄壁构件优化设计领域。首先,获取典型加筋单胞的等效材料属性,并建立备选材料库。其次,针对给定目标,优化获得最优的材料分布。最后,基于最优材料分布进行筋条路径、布局特征提取和函数描述,并开展筋条布局、形状、尺寸协同优化设计。本发明可以通过筋条布局、形状、尺寸协同优化设计提供新颖的加筋薄壁结构设计,同时大幅提高结构的力学性能,并且本发明方法能充分考虑结构的制造约束,所提供的创新设计具有筋条路径清晰、连续等特点。可以用于航空航天加筋薄壁结构的设计当中,为航空航天装备的轻量化设计发挥作用。
-
公开(公告)号:CN103738747B
公开(公告)日:2016-03-02
申请号:CN201310690965.3
申请日:2013-12-13
Applicant: 大连理工大学
Abstract: 本发明公开了一种移动漏斗式粉床铺粉装置,其主要包括上料装置、移动(落料)漏斗、粉料铺平装置、相关传动机构装置等。计算出每层所需粉料量,利用移动漏斗内料位传感器控制上料装置精确定量上料到移动漏斗内。通过控制落料漏斗左右移动速度、落料口的孔径以及落料口的开合度,以实现快速均匀落料,之后最后通过粉料刮平板的前后移动把落料刮平,完成铺粉过程。本发明落料过程快速均匀,节省粉料使用量,增加快速成型设备加工效率,降低成本。
-
公开(公告)号:CN104866673A
公开(公告)日:2015-08-26
申请号:CN201510279783.6
申请日:2015-05-28
Applicant: 大连理工大学
IPC: G06F17/50
Abstract: 本发明涉及航空航天结构主承力构件设计领域,提供一种轴压加筋柱壳的开口补强方法,所述轴压加筋柱壳的开口补强方法包括:步骤100,对含开口的轴压加筋柱壳划分远口区和近口区;步骤200,在远口区建立等效刚度模型,在近口区建立精细几何模型,并获得轴压加筋柱壳的混合分析模型;步骤300,对轴压加筋柱壳进行开口补强优化,并对最优结果进行校验。本发明能够提高轴压加筋柱壳的开口补强效率、降低计算成本。
-
公开(公告)号:CN118485006B
公开(公告)日:2024-10-01
申请号:CN202410939212.X
申请日:2024-07-15
Applicant: 大连理工大学
Abstract: 一种基于虚实数据融合的结构载荷动态预测方法,属于结构载荷预测技术领域,步骤:1)建立理想仿真模型并参数化表示仿真模型的偏差,获得多源偏差参数化仿真模型;2)获得传感器位置对应的结构力学响应数据和结构载荷数据,构建虚拟试验样本集;3)对虚拟试验样本集进行数据增强;4)训练结构力学响应数据和结构载荷数据的映射关系,获得载荷动态预测模型;5)实时采集结构力学响应数据构建实测样本集,将实测数据输入载荷动态预测模型,输出载荷预测结果。本发明解决的问题是:仿真分析实时性较差且无法随试验或服役情况变化动态更新的问题;实测数据尤其是结构破坏时的实测数据缺乏导致难以构建高精度的载荷动态预测模型。
-
-
-
-
-
-
-
-
-