面向大规模分类体系的短文本标签方法、系统、装置

    公开(公告)号:CN110059181B

    公开(公告)日:2021-06-25

    申请号:CN201910202727.0

    申请日:2019-03-18

    Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。

    一种基于异构图注意力神经网络的暗网线索检测方法

    公开(公告)号:CN111737551B

    公开(公告)日:2022-08-05

    申请号:CN202010452949.0

    申请日:2020-05-26

    Abstract: 本发明公开一种基于异构图注意力神经网络的暗网线索检测方法:步骤一、对暗网进行文本采集;步骤二、针对采集到的暗网文本信息,进行事件标题、关键词及实体提取,构建动态异构信息网络;步骤三、对构建的异构信息网络中的节点进行embedding处理,并得到各节点的特征向量;步骤四、对异构信息网络的图结构进行学习;步骤五、根据对异构信息网络的图结构学习得到的结果,对异构信息网络中的节点进行线索类别分类,从而完成对暗网信息的线索检测。本发明利用了外部知识库作为依托,并且采用了两套方法来对构建的异构信息网络的图结构进行学习,具有良好的线索检测效果。

Patent Agency Ranking