-
公开(公告)号:CN119548152A
公开(公告)日:2025-03-04
申请号:CN202411463918.X
申请日:2024-10-18
Applicant: 中国科学院自动化研究所 , 中国人民解放军总医院
IPC: A61B5/369 , A61B5/372 , A61B5/00 , G06F18/241 , G06N3/049 , G06N3/084 , G06N3/0495
Abstract: 一种基于脉冲神经网络的人脑电图信号识别方法及相关设备,涉及人脑电图信号处理技术领域。其中,方法包括:获取目标人脑电图信号;将所述目标人脑电图信号输入至脉冲神经网络,获取所述脉冲神经网络输出的识别结果;其中,所述识别结果由所述脉冲神经网络基于目标脉冲信号解码得到,所述目标脉冲信号由所述目标人脑电图信号对应的突触电流持续刺激所述脉冲神经网络中的神经元产生,所述脉冲神经网络通过训练得到。实施本发明提供的技术方案,可以降低人脑电图信号处理的计算量和能耗。
-
公开(公告)号:CN119360893A
公开(公告)日:2025-01-24
申请号:CN202411523922.0
申请日:2024-10-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本公开关于声音分类方法、装置、电子设备、存储介质和计算机程序产品,包括:提取待分类的声音信号的音频特征;将音频特征输入脉冲残差模块,获得第一脉冲残差特征;将第一脉冲残差特征输入至少一个脉冲残差模块,获得第二脉冲残差特征;将第二脉冲残差特征以及经过下采样后的第一脉冲残差特征输入注意力特征融合模块,获得第一注意力融合特征;基于第一注意力融合特征,对待分类的声音信号进行分类。本公开可以充分利用脉冲神经网络(SNN)和残差神经网络的优势,可以实现高效、准确的进行声音分类,并可以显著降低系统功耗。
-
公开(公告)号:CN119314020A
公开(公告)日:2025-01-14
申请号:CN202411423624.4
申请日:2024-10-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及目标识别技术领域,公开了基于脉冲神经网络的视觉识别方法及装置,包括:对预设动态目标的视频样本数据进行脉冲编码得到脉冲序列,输入预设的脉冲神经网络进行残差计算,对脉冲网络输出特征进行长短期时序特征提取,将提取出的长短期时序特征与脉冲网络输出特征进行融合得到目标融合特征,计算目标融合特征的损失值,对脉冲神经网络进行反向迭代更新,得到目标长短期时序特征融合模型;将待识别的动态目标的视频流数据输入到长短期时序特征融合模型得到识别结果。本发明通过结合长短期时序特征提取,克服了现有脉冲神经网络在捕捉和识别动态数据时无法有效利用时序信息进行动态数据识别的缺陷,提升对于动态数据的视觉识别准确性。
-
公开(公告)号:CN118520153A
公开(公告)日:2024-08-20
申请号:CN202410972733.5
申请日:2024-07-19
Applicant: 中国科学院自动化研究所
IPC: G06F16/903 , G06N3/0455 , G06N3/08
Abstract: 本发明提供一种NFT跨模态检索方法、装置及存储介质,涉及电数字数据处理技术领域,所述方法包括:获取用于检索的语义信息;将所述语义信息输入至NFT跨模态检索模型中,基于置信累加两阶段搜索算法获取与语义信息最为匹配的NFT检索结果,所述NFT跨模态检索模型是基于动态组件差分训练得到的。本发明提供的NFT跨模态检索方法、装置及存储介质,可以根据动态组件差分训练得到NFT跨模态检索模型,然后根据NFT跨模态检索模型通过置信累加两阶段搜索算法,从而能够根据用户输入的语义信息输出与之最为匹配的检索结果,可以提高NFT图像的检索精度。
-
公开(公告)号:CN118072079A
公开(公告)日:2024-05-24
申请号:CN202410123207.1
申请日:2024-01-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06N3/049 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种基于脉冲神经网络的小目标物体识别方法及装置,该方法包括:获取待测物体图像;基于双流融合模型对待测物体图像进行分类识别,得到分类识别结果;双流融合模型基于脉冲神经网络和残差网络构建得到,双流融合模型通过以样本物体图像为训练样本,以融合特征为训练特征训练得到;融合特征基于脉冲神经网络输出特征和残差网络输出特征确定,脉冲神经网络和残差网络分别包括多个依次排列的残差块,脉冲神经网络的当前残差块输入的特征为脉冲神经网络的上一个残差块输出的特征和残差网络中与上一个残差块对应的残差块输出的特征之和。本发明所述方法能够提取更丰富的图像特征信息,可提升小目标物体的识别精度。
-
公开(公告)号:CN114219936A
公开(公告)日:2022-03-22
申请号:CN202111266514.8
申请日:2021-10-28
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
IPC: G06V10/25 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种目标检测方法、电子设备、存储介质和计算机程序产品,方法包括获取包含待检测目标的待检测图像;将所述待检测图像输入至目标检测模型,进行目标检测,获得所述目标检测模型输出的目标检测结果,所述目标检测模型是基于候选框及其对应的正负标签训练得到的,所述正负标签是基于所述候选框与所述候选框对应的真实框的交并比,以及动态变化的交并比阈值确定得到的。本发明通过动态变化的交并比阈值,动态变化候选框的正负标签,以使最后分配给候选框的正负标签为准确标签,从而提高候选框的标签分配准确度,进而提高目标检测模型的召回率,最终实现高性能的目标检测。
-
公开(公告)号:CN110215216B
公开(公告)日:2020-08-25
申请号:CN201910500528.8
申请日:2019-06-11
Applicant: 中国科学院自动化研究所
IPC: A61B5/11
Abstract: 本发明属于计算机视觉领域,具体涉及一种基于骨骼关节点分区域分层次的行为识别方法、系统、装置,旨在为了解决有效提高行为识别准确率同时减少网络层数的问题。本发明方法包括:获取输入视频的各帧图像,从各帧图像中分别提取骨骼关节点;对每一帧图像,将其中所提取的所述骨骼关节点划分至所划分的各人体区域,并通过图卷积操作获取对应的特征表示,得到第一层特征表示集;对每一帧图像,按照所述各人体区域,基于所述第一层特征表示,通过池化、图卷积方法逐层减少关节点数量,直至通过多层聚合得到一个特征向量,并将该特征向量输入到两个全连接层得到行为类别。本发明提高了行为识别的准确率,加快了训练速度与检测速度。
-
公开(公告)号:CN119169045B
公开(公告)日:2025-05-16
申请号:CN202411283206.X
申请日:2024-09-12
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本公开提供一种基于类脑脉冲的光流估计方法、装置、介质和计算机设备。光流估计方法包括:获取事件相机数据和帧相机数据;通过脉冲神经网络从事件相机数据提取第一特征;通过卷积神经网络从帧相机数据提取第二特征;拼接第一特征和第二特征,以获得第三特征并且利用残差网络对第三特征进行转换,以获得转换特征;利用光流细化网络对转换特征、脉冲神经网络的除了输出层之外的至少一层提取的特征和卷积神经网络的除了输出层之外的至少一层提取的特征进行光流细化,以生成光流场。
-
公开(公告)号:CN119538100A
公开(公告)日:2025-02-28
申请号:CN202510081115.6
申请日:2025-01-17
Applicant: 中国科学院自动化研究所
IPC: G06F18/2415 , G06F18/214 , G06N3/0464 , G06N3/084
Abstract: 本申请公开了一种基于深度时间对齐梯度增强的神经网络的训练方法及装置。所述训练方法包括:获取输入样本数据;将输入样本数据输入到基于深度时间对齐梯度增强的神经网络模型,得到与输入样本数据的类别对应的预测类别概率数据;根据预测类别概率数据和样本标签数据,调整基于深度时间对齐梯度增强的神经网络模型的各个参数,得到训练后的神经网络模型,其中,基于深度时间对齐梯度增强的神经网络模型包括输入层、K个阶段和输出层,第1个阶段至第K‑1个阶段各自包括基于深度时间对齐梯度增强的卷积网络和辅助分类器网络,并且第K个阶段包括基于深度时间对齐梯度增强的卷积网络,其中,K为大于1的正整数。
-
公开(公告)号:CN119376397A
公开(公告)日:2025-01-28
申请号:CN202411513196.4
申请日:2024-10-28
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本发明提供基于类脑脉冲强化学习的避障方法及装置,涉及自动化与智能传感技术领域,所述方法包括将机器人的线速度、角速度、目标距离、方向以及雷达数据进行预处理后输入脉冲神经网络,得到机器人的动作;其中,使用强化学习DDPG对脉冲神经网络进行训练,使用评论家网络优化参数,损失值小于一定阈值则得到训练好的脉冲神经网络模型。脉冲神经网络中,目标数据、自身数据由一个全连接层处理,雷达数据由另一个全连接层处理,将两个全连接层输出的融合特征进行加权后再经过全连接层得到机器人动作。本发明实现了在静态复杂场景下的机器人无图避障导航,并提升了导航的性能。
-
-
-
-
-
-
-
-
-