基于脉冲神经网络的视觉识别方法及装置

    公开(公告)号:CN119314020A

    公开(公告)日:2025-01-14

    申请号:CN202411423624.4

    申请日:2024-10-12

    Abstract: 本发明涉及目标识别技术领域,公开了基于脉冲神经网络的视觉识别方法及装置,包括:对预设动态目标的视频样本数据进行脉冲编码得到脉冲序列,输入预设的脉冲神经网络进行残差计算,对脉冲网络输出特征进行长短期时序特征提取,将提取出的长短期时序特征与脉冲网络输出特征进行融合得到目标融合特征,计算目标融合特征的损失值,对脉冲神经网络进行反向迭代更新,得到目标长短期时序特征融合模型;将待识别的动态目标的视频流数据输入到长短期时序特征融合模型得到识别结果。本发明通过结合长短期时序特征提取,克服了现有脉冲神经网络在捕捉和识别动态数据时无法有效利用时序信息进行动态数据识别的缺陷,提升对于动态数据的视觉识别准确性。

    NFT跨模态检索方法、装置及存储介质

    公开(公告)号:CN118520153A

    公开(公告)日:2024-08-20

    申请号:CN202410972733.5

    申请日:2024-07-19

    Abstract: 本发明提供一种NFT跨模态检索方法、装置及存储介质,涉及电数字数据处理技术领域,所述方法包括:获取用于检索的语义信息;将所述语义信息输入至NFT跨模态检索模型中,基于置信累加两阶段搜索算法获取与语义信息最为匹配的NFT检索结果,所述NFT跨模态检索模型是基于动态组件差分训练得到的。本发明提供的NFT跨模态检索方法、装置及存储介质,可以根据动态组件差分训练得到NFT跨模态检索模型,然后根据NFT跨模态检索模型通过置信累加两阶段搜索算法,从而能够根据用户输入的语义信息输出与之最为匹配的检索结果,可以提高NFT图像的检索精度。

    基于骨骼关节点分区域分层次的行为识别方法、系统

    公开(公告)号:CN110215216B

    公开(公告)日:2020-08-25

    申请号:CN201910500528.8

    申请日:2019-06-11

    Abstract: 本发明属于计算机视觉领域,具体涉及一种基于骨骼关节点分区域分层次的行为识别方法、系统、装置,旨在为了解决有效提高行为识别准确率同时减少网络层数的问题。本发明方法包括:获取输入视频的各帧图像,从各帧图像中分别提取骨骼关节点;对每一帧图像,将其中所提取的所述骨骼关节点划分至所划分的各人体区域,并通过图卷积操作获取对应的特征表示,得到第一层特征表示集;对每一帧图像,按照所述各人体区域,基于所述第一层特征表示,通过池化、图卷积方法逐层减少关节点数量,直至通过多层聚合得到一个特征向量,并将该特征向量输入到两个全连接层得到行为类别。本发明提高了行为识别的准确率,加快了训练速度与检测速度。

    基于深度时间对齐梯度增强的神经网络的训练方法及装置

    公开(公告)号:CN119538100A

    公开(公告)日:2025-02-28

    申请号:CN202510081115.6

    申请日:2025-01-17

    Abstract: 本申请公开了一种基于深度时间对齐梯度增强的神经网络的训练方法及装置。所述训练方法包括:获取输入样本数据;将输入样本数据输入到基于深度时间对齐梯度增强的神经网络模型,得到与输入样本数据的类别对应的预测类别概率数据;根据预测类别概率数据和样本标签数据,调整基于深度时间对齐梯度增强的神经网络模型的各个参数,得到训练后的神经网络模型,其中,基于深度时间对齐梯度增强的神经网络模型包括输入层、K个阶段和输出层,第1个阶段至第K‑1个阶段各自包括基于深度时间对齐梯度增强的卷积网络和辅助分类器网络,并且第K个阶段包括基于深度时间对齐梯度增强的卷积网络,其中,K为大于1的正整数。

    基于类脑脉冲强化学习的避障方法及装置

    公开(公告)号:CN119376397A

    公开(公告)日:2025-01-28

    申请号:CN202411513196.4

    申请日:2024-10-28

    Abstract: 本发明提供基于类脑脉冲强化学习的避障方法及装置,涉及自动化与智能传感技术领域,所述方法包括将机器人的线速度、角速度、目标距离、方向以及雷达数据进行预处理后输入脉冲神经网络,得到机器人的动作;其中,使用强化学习DDPG对脉冲神经网络进行训练,使用评论家网络优化参数,损失值小于一定阈值则得到训练好的脉冲神经网络模型。脉冲神经网络中,目标数据、自身数据由一个全连接层处理,雷达数据由另一个全连接层处理,将两个全连接层输出的融合特征进行加权后再经过全连接层得到机器人动作。本发明实现了在静态复杂场景下的机器人无图避障导航,并提升了导航的性能。

Patent Agency Ranking