-
公开(公告)号:CN103743395A
公开(公告)日:2014-04-23
申请号:CN201410022467.6
申请日:2014-01-17
Applicant: 哈尔滨工程大学
IPC: G01C21/00
CPC classification number: G01C21/165 , G01C21/005 , G01C25/005
Abstract: 本发明公开了一种惯性重力匹配组合导航系统中时间延迟的补偿方法,包括以下几个步骤:步骤一,采集惯性导航系统输出的纬度经度λ、航向ψ和速度V及重力仪测得的重力信号;步骤二,计算重力信号的厄特弗斯校正值,并对厄特弗斯校正值进行滤波处理;步骤三,确定重力信号的延迟时间;步骤四,利用基于重力等值线的匹配算法,获取重力信号相应时刻的载体位置;步骤五,建立卡尔曼滤波器模型;步骤六,将载体位置的经度和纬度作为观测量,利用卡尔曼滤波实时估计重力信号对应时间点的惯性导航系统误差,对惯导系统进行校正;步骤七,进行卡尔曼滤波多步预测出当前时刻的状态向量,完成时间延迟补偿。本法明具有补偿重力信号时间延迟、高导航精度的优点。
-
公开(公告)号:CN103616027A
公开(公告)日:2014-03-05
申请号:CN201310690254.6
申请日:2013-12-17
Applicant: 哈尔滨工程大学
Abstract: 本发明属于重力辅助惯性导航系统的技术领域,尤其涉及一种基于改进MSD的重力匹配方法。本发明包括:确定参考位置信息;引入位置误差向量;确定代价函数;确定使代价函数E最小的位置误差向量;得到最终位置。针对传统的重力匹配方法计算量大、耗时多的问题,本发明在MSD的基础上,引入位置误差向量,确定代价函数,简化匹配计算机中的匹配过程,在保证匹配精度的基础上,提高了匹配计算机的工作效率。本发明引入SOR迭代方法,获取位置误差向量,其收敛速度更快。一般的匹配方法都会用到重力数据库,现有重力数据库的精度还有待进一步提高,本发明的匹配过程中仅用到参考轨迹上点处的重力异常值及其变化梯度,减轻对重力数据库的依赖。
-
公开(公告)号:CN103604428A
公开(公告)日:2014-02-26
申请号:CN201310589688.7
申请日:2013-11-22
Applicant: 哈尔滨工程大学
IPC: G01C21/02
CPC classification number: G01C21/02 , G01C21/165 , G01C25/005
Abstract: 本发明公开了一种基于高精度水平基准的星敏感器定位方法,首先采集CCD星敏感器的输出;进而将星敏感器与捷联惯导系统组合,修正捷联惯导系统的姿态并补偿星敏感器的安装误差,得到较高精度的水平基准信息;再采集组合导航系统提供的高精度水平基准信息,即采集运动载体的横摇角和纵摇角,得到载体系到准地理坐标系的姿态转换矩阵。与现有技术相比,本发明通过将惯性导航系统和星敏感器组合,通过滤波校正惯性导航系统的姿态误差,有效提高星敏感器定位所依赖的水平基准信息,同时各类误差源确定,极大地提高了星敏感器的定位精度。
-
公开(公告)号:CN103398725A
公开(公告)日:2013-11-20
申请号:CN201310322321.9
申请日:2013-07-29
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种基于星敏感器的捷联惯导系统初始对准的方法,包括以下步骤:确定载体的初始位置;根据初始位置得到位置矩阵;获取惯性坐标系到地球坐标系的转换矩阵采集星敏感器输出确定初始对准矩阵捷联惯导系统解算姿态信息;估计出陀螺漂移。本发明通过采用以姿态误差角为观测量,利用卡尔曼滤波技术估计陀螺漂移,提高了对准精度,并且随着时间的增加精度有显著的提高。本发明利用了星敏感器提高高精度载体姿态的特点,误差小,速度快,基于星敏感器的初始对准技术不但可以在复杂环境下提供高精度的初始对准数据,同时可以作为一种对准信息源在其他对准过程中发挥自己应用的作用。
-
公开(公告)号:CN103630147B
公开(公告)日:2017-11-14
申请号:CN201310603099.X
申请日:2013-11-26
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种基于HMM的个人自主导航系统零速检测方法:采集个人自主导航系统微型惯性测量单元中Y轴陀螺的输出信息;利用函数将Y轴陀螺的输出信息进行初步分段,并将分段后Y轴陀螺输出值进行范围划分;将使用者一步运动时Y轴陀螺输出值进行分成段、命名,将其视为HMM过程的状态量;将一个输出范围作为HMM的一个输出,使零速检测问题转化为HMM解码问题;求出使用者一步运动过程中状态转移矩阵A及输出过程和状态过程的转换关系可以用矩阵B;利用Viterbi求取HMM的状态量Qk;利用不等式判别个人自主导航系统使用者运动过程中的零速区间。本发明检测方法问题数学化、模型化,提高了检测的精度。
-
公开(公告)号:CN103499354B
公开(公告)日:2017-01-18
申请号:CN201310449336.1
申请日:2013-09-24
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种基于内曼—皮尔逊准则的零速检测方法,该方法包括:手持掌上电脑实时接收单兵导航系统中脚步运动时传感器输出的量测信息;根据系统采样频率和数据传输速率确定窗口函数N;利用双假设检验理论将零速检测问题转化为模型化数学问题,并求得内曼—皮尔逊准则下的零速检测不等式;确定微型惯性测量单元传感器输出信号及掌上电脑接收信号的数学模型;求出微型惯性测量单元传感器输出信号的联合概率密度函数;利用未知信号元素的极大似然估计值取代零速检测不等式中未知元素得到广泛概率似然比不等式;将微型惯性测量单元输出数据代入广泛概率似然比不等式中,进而检测零速状态。本发明使检测方法问题数学化、模型化,提高了检测精度。
-
公开(公告)号:CN103822633B
公开(公告)日:2016-12-07
申请号:CN201410047878.0
申请日:2014-02-11
Applicant: 哈尔滨工程大学
IPC: G01C21/20
Abstract: 本发明提供的是一种基于二阶量测更新的低成本姿态估计方法。本发明通过对三轴微机械陀螺、三轴微机械加速度计和三轴磁强计的输出数据,进行滤波处理得到载体的姿态信息。针对在室内或磁干扰较强场所,磁强计输出会使横摇和纵摇误差变大,传统方法难以解决的问题。本方法在滤波的量测更新阶段,创新性地采用二阶量测更新,即先进行加速度计量测更新再进行磁强计量测更新。以此修正标准量测更新算法从而使磁强计更新只影响方位角。利用本方法可以使用低成本的微惯性测量单元和磁强计进行姿态估计,并且估计精度高、实时性好、适应强磁干扰环境。本方法适用于车辆、无人机和船舰等载体的姿态估计。
-
公开(公告)号:CN103969630B
公开(公告)日:2016-09-14
申请号:CN201410201294.4
申请日:2014-05-14
Applicant: 哈尔滨工程大学
IPC: G01S7/36
Abstract: 本发明属于信号抗干扰技术领域,特别涉及一种基于频率响应不变的稳健宽带波束形成方法。将整个宽带信号频带划分为L个子带;选取一个参考频率,在该参考频率点处设计一个具有零陷控制特性的最优权矢量,得到参考波束图;引入响应变量,利用该响应变量提供不变的频率响应,使信号在频带上的各个频点都具有连续一致的阵列响应;利用二阶锥规划的方法设计其他子带的低旁瓣最优权矢量,使其他子带的波束图与参考波束图具有相同主瓣宽度和零陷控制特性;利用最终设计得到的最优权矢量,形成一种基于频率响应不变的稳健宽带波束。本发明由于引入了响应变量,具有更高的阵列自由度,以及更小的运算量,表现出更优异的抗干扰性能。
-
公开(公告)号:CN103901459B
公开(公告)日:2016-08-17
申请号:CN201410083232.8
申请日:2014-03-08
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种MEMS/GPS组合导航系统中量测滞后的滤波方法。采集MEMS三轴陀螺信号和加速度计信号,GPS输出的位置和速度信息;选取MEMS/GPS组合导航系统Kalman滤波器的状态变量;用Bernoulli分布序列γk来判断量测数据在某个时刻是否发生滞后;计算量测数据延迟时间段内滤波信息的修正量;利用双通道滤波方案解决量测滞后情况下的滤波增益KK不匹配问题;最后对MEMS/GPS组合导航系统中量测滞后进行补偿。本发明根据量测数据的延迟情况分别建立相应的量测方程,计算滤波修正量并对系统进行补偿。本发明能够有效地提高MEMS/GPS组合导航系统的精度,避免了量测数据发生延迟时可能导致系统误差发散的问题,具有较强的现实应用意义。
-
公开(公告)号:CN103900608B
公开(公告)日:2016-08-17
申请号:CN201410105384.3
申请日:2014-03-21
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明提供的是一种基于四元数CKF的低精度惯导初始对准方法。首先利用加速度计和磁强计的测量值进行粗对准,得到粗略的姿态矩阵。然后利用GPS提供的准确外界信息,取位置和速度误差作为量测量,通过四元数CKF进行非线性滤波,得到姿态误差矩阵。最后利用姿态误差矩阵进行校正,得到精确的姿态矩阵。本发明利用加速度计和磁强计分别对重力加速度和磁力的量测值,进行粗对准。解决了在低精度惯性器件的条件下,由于陀螺性能低,无法正确敏感地球自转角速率,不能应用传统粗对准方法的问题;另一方面,本方法中提出的四元数CKF能适用于大角度误差的非线性模型,可以在大方位失准角的条件下依然很好的完成对准,且对准精度高。
-
-
-
-
-
-
-
-
-