-
公开(公告)号:CN106369248A
公开(公告)日:2017-02-01
申请号:CN201610843214.4
申请日:2016-09-23
Applicant: 哈尔滨工业大学
IPC: F16M7/00
CPC classification number: F16M7/00
Abstract: 一种可实现平台升降及水平调整功能的支撑机构,属于平台支撑技术领域,解决了现有的平台存在的问题,它包含螺纹支撑杆、调节螺帽、半球形球头、定位销、底座、防脱落挡片和平台连接套筒;在螺纹支撑杆的一端设置有调节螺帽,在螺纹支撑杆的另一端设置有半球形球头,半球形球头的轴心线与螺纹支撑杆的轴心线设置在一条直线上,半球形球头的直径大于螺纹支撑杆的直径;底座为圆柱形状,在底座的一个平面上设置有圆柱形凹槽,在圆柱形凹槽的底部设置有与半球形球头吻合的半球形凹槽,半球形球头设置在底座的半球形凹槽内,防脱落挡片与底座通过螺栓来连接;平台连接套筒用于支撑机构与平台的连接;本发明用于支撑平台。
-
公开(公告)号:CN105093523A
公开(公告)日:2015-11-25
申请号:CN201510578682.9
申请日:2015-09-11
Applicant: 哈尔滨工业大学
IPC: G02B27/00
CPC classification number: G02B27/0025
Abstract: 本发明公开了一种多尺度多孔径光学成像系统,所述光学成像系统由一个中心光学成像系统和四个拥有完全相同光学结构的副光学成像系统组成,中心光学成像系统为旋转对称系统,光轴与系统中心轴重合,四个副光学成像系统位于中心光学成像系统后方,从像截面上看,四个副光学成像系统光轴分布在以中心光学成像系统光轴为中心的长方形顶点上,目标发出的不同角度的平行光分别通过中心光学成像系统和副光学成像系统成像于在同一探测器像平面内不同坐标点上。应用本系统收集目标物体信息能够获得分立的多幅目标图像,中心图像分辨率高于副图像分辨率,各图像在视场上有一定像素数的重合,能够为后续数据处理提供良好的支持。
-
公开(公告)号:CN103064185B
公开(公告)日:2015-11-25
申请号:CN201310010463.1
申请日:2013-01-11
Applicant: 哈尔滨工业大学
Abstract: 一种红外光学系统,涉及一种应用于红外/激光双模制导中的红外成像制导光学系统。本发明的红外光学系统从物面到像面依次同轴设置有整流罩(1)、第一透镜组(2)、棱镜(3)、第二透镜组(4)和红外成像探测器(5),采用折射二次成像的结构形式达到了大视场的要求,同时实现了100%的冷光阑效率,中间像面处设置有视场光阑,可以很好的抑制杂散光,且该系统适用于小像元探测器,提高了系统的成像分辨率。本发明红外成像光学系统通过引入非球面和二元光学技术,有效提高了系统的成像质量,简化了系统的结构。本发明的红外光学系统具有大视场、高分辨率、高精度的优点。
-
公开(公告)号:CN104992020A
公开(公告)日:2015-10-21
申请号:CN201510400440.0
申请日:2015-07-09
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种n型Si材料中电子输运问题的Monte Carlo模拟方法,其步骤如下:一、载流子散射机制的确定以及对应输入条件下各种散射率的计算;二、载流子漂移模型的建立以及载流子漂移后能量与波矢量的计算;三、载流子散射模型的建立以及散射类型的选择;四、Monte Carlo方法模拟n型半导体Si材料中电子的输运问题计算程序的实现。本发明使得计算n型Si材料的平均速率以及迁移率变得简单快捷,避免了之前使用实验测试方法受到半导体器件尺寸以及实验条件影响造成的难测试以及误差较大等一系列问题,而且该方法具有较强的可推广性,其他半导体材料载流子输运或微观粒子的碰撞问题也可以通过改变对应的输入参数来进行计算。
-
公开(公告)号:CN104933271A
公开(公告)日:2015-09-23
申请号:CN201510413793.4
申请日:2015-07-15
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种ANSYS中等厚度二次曲面光学头罩有限元模型的建立方法,其步骤如下:一、确定二次曲线方程,并将其转化为函数形式;二、依据要建立模型的开口方向选定自变量并确定自变量的范围;三、基于APDL编写循环命令建立疏密分布的关键点;四、基于APDL使用B样条线段命令BSPLINE形成初步样条曲线;五、对步骤四中的初步样条线进行线段的融合;六、连接步骤五中融合后的线段形成平面;七、对步骤六中所形成的面进行网格划分;八、对步骤七中形成的有限元模型旋转成体。本发明所提出的方法解决了在ANSYS中直接建立二次曲面模型难的问题且相比较直接采用用户界面进行分析的过程,避免了同一类问题多次进行加载费事、费力、易错等缺点。
-
公开(公告)号:CN103135149B
公开(公告)日:2015-04-22
申请号:CN201210579187.6
申请日:2012-12-28
Applicant: 哈尔滨工业大学
IPC: G02B3/00
Abstract: 简易且高成像质量的二维光子晶体平板透镜,涉及一种二维光子晶体平板透镜。为了提高二维光子准晶平板透镜在纤维集成光学领域中的集成度,以及降低现有工艺水平对透镜制备的限制,本发明的简易且高成像质量的二维光子晶体平板透镜为包含二维光子晶体结构中心处三个完整散射子的平板透镜,其中平板透镜中散射子半径r∈[0,0.353a],a为晶格常数。本发明的简易且高成像质量的二维光子晶体平板透镜为一种极小尺寸且极少散射子数的三散射子二维光子晶体平板透镜,可提高二维光子晶体平板透镜在纤维集成光学领域中的集成度,以及降低现有工艺水平对透镜制备的限制。
-
公开(公告)号:CN103048778B
公开(公告)日:2015-03-04
申请号:CN201310010338.0
申请日:2013-01-11
Applicant: 哈尔滨工业大学
Abstract: 无限远像距显微物镜光学系统,属于显微物镜设计领域。为了克服普通共焦显微技术光路设计的不足,本发明的无限远像距显微物镜光学系统包括沿同一光轴从平行光源到物面依次排列的光阑(1)、前弯月型透镜(2)、双胶合透镜(3)、双胶合透镜(4)、后弯月型透镜(5)和平凸透镜(6);所述前弯月型透镜(2)和后弯月型透镜(5)的弯向都背对光阑(1),第一双胶合透镜(3)和第二双胶合透镜(4)的胶合面弯向光阑(1),平凸透镜(6)的凸向朝向光阑(1);设显微物镜系统的焦距为,数值孔径为,入瞳直径为,系统放大率为,则,,。本发明无限远像距显微物镜光学系统结构灵活简单,放大倍率比较高,聚焦性好。
-
公开(公告)号:CN102749189B
公开(公告)日:2014-12-10
申请号:CN201210254546.0
申请日:2012-07-23
Applicant: 哈尔滨工业大学
IPC: G01M11/02
Abstract: 二维光子准晶楔形棱镜折射效应的双直线轨道探测方法,涉及一种双直线轨道探测方法。本发明的双直线轨道探测方法为:设置两条平行于二维光子准晶楔形棱镜斜边的直线轨道,根据两轨道与斜边的相对位置以及在两轨道上探测出的强度最大值位置,由几何关系及折射定律即可确定折射波束的折射角及等效折射率,以及出射位置及出射位置偏移量,即确定二维光子准晶楔形棱镜的折射效应。本发明的双直线轨道探测方法可应用于任意电磁波及任意二维N重准晶楔形棱镜。本发明适用于光子晶体,尤其光子准晶领域。同时,本发明也解决了以往单一圆弧形轨道探测方法未能准确探测或计算折射角及等效折射率的问题。
-
公开(公告)号:CN103969832A
公开(公告)日:2014-08-06
申请号:CN201410225708.7
申请日:2014-05-27
Applicant: 哈尔滨工业大学
IPC: G02B27/09
Abstract: 基于微透镜阵列的激光扩束匀光器,属于激光扩束领域。所述激光扩束匀光器依次由位于同一直线上的第一级微透镜阵列、可变光阑和第二级微透镜阵列构成,三者的屏边平行,组成共轴系统。其中,第一级微透镜阵列和第二级微透镜阵列的微透镜元参数相同,微透镜元直径为p,微透镜阵列的后焦距为f;第一级微透镜阵列的直径为D1,可变光阑的最大直径为D2,第二级微透镜阵列的直径为D3,两级微透镜阵列之间的距离为d,可变光阑距第一级微透镜阵列和第二级微透镜阵列的距离分别为f和d-f。本发明通过应用微透镜阵列取代单透镜设计扩束系统,改善扩束光学系统像差质量,简化系统结构,提高扩束比,降低了系统装调的精度要求。
-
公开(公告)号:CN103048778A
公开(公告)日:2013-04-17
申请号:CN201310010338.0
申请日:2013-01-11
Applicant: 哈尔滨工业大学
Abstract: 无限远像距显微物镜光学系统,属于显微物镜设计领域。为了克服普通共焦显微技术光路设计的不足,本发明的无限远像距显微物镜光学系统包括沿同一光轴从平行光源到物面依次排列的光阑(1)、前弯月型透镜(2)、双胶合透镜(3)、双胶合透镜(4)、后弯月型透镜(5)和平凸透镜(6);所述前弯月型透镜(2)和后弯月型透镜(5)的弯向都背对光阑(1),第一双胶合透镜(3)和第二双胶合透镜(4)的胶合面弯向光阑(1),平凸透镜(6)的凸向朝向光阑(1);设显微物镜系统的焦距为,数值孔径为,入瞳直径为,系统放大率为,则,,。本发明无限远像距显微物镜光学系统结构灵活简单,放大倍率比较高,聚焦性好。
-
-
-
-
-
-
-
-
-