一种采用固体工质的大范围可调等离子体微推力器

    公开(公告)号:CN107387348B

    公开(公告)日:2019-07-02

    申请号:CN201710822931.3

    申请日:2017-09-13

    Abstract: 一种采用固体工质的大范围可调等离子体微推力器,属于推力器领域,本发明为解决现有会切场推力器贮供系统体积大,复杂度高和阳极发热造成电能浪费的问题。本发明在陶瓷通道底部设置有贮供复合阳极,所述贮供复合阳极包括阳极、加热丝和导线,阳极的内腔中设置有导热棒并固接在阳极的顶端盖内壁上,阳极的顶端盖上设置有n个出气孔并与内腔连通,n≥8;阳极的内腔中存储固体工质;阳极的底板下方设置有加热腔,加热腔内设置有加热丝;加热腔的底板固接两根引出管;加热丝通过从引出管中穿过的导线与外界电源实现电连接;加热丝对阳极进行加热,热量通过导热棒传递给固体工质,固体工质加热汽化后从出气孔进入陶瓷通道中。

    一种采用固体工质的大范围可调等离子体微推力器

    公开(公告)号:CN107387348A

    公开(公告)日:2017-11-24

    申请号:CN201710822931.3

    申请日:2017-09-13

    CPC classification number: F03H1/0093

    Abstract: 一种采用固体工质的大范围可调等离子体微推力器,属于推力器领域,本发明为解决现有会切场推力器贮供系统体积大,复杂度高和阳极发热造成电能浪费的问题。本发明在陶瓷通道底部设置有贮供复合阳极,所述贮供复合阳极包括阳极、加热丝和导线,阳极的内腔中设置有导热棒并固接在阳极的顶端盖内壁上,阳极的顶端盖上设置有n个出气孔并与内腔连通,n≥8;阳极的内腔中存储固体工质;阳极的底板下方设置有加热腔,加热腔内设置有加热丝;加热腔的底板固接两根引出管;加热丝通过从引出管中穿过的导线与外界电源实现电连接;加热丝对阳极进行加热,热量通过导热棒传递给固体工质,固体工质加热汽化后从出气孔进入陶瓷通道中。

    会切磁场推力器的磁场屏蔽罩

    公开(公告)号:CN106286180A

    公开(公告)日:2017-01-04

    申请号:CN201610902364.8

    申请日:2016-10-17

    CPC classification number: F03H1/0087 H05K9/0071

    Abstract: 会切磁场推力器的磁场屏蔽罩,属于电推进器领域,本发明为解决会切磁场推力器外围磁感应强度过强,对卫星电子设备造成严重干扰的问题。本发明包括底板、筒身和盖子;筒身为均匀直径的圆筒形结构;其下端口设置的底板与筒身为一体加工成型,底板的中心位置设置有陶瓷入口安装孔;筒身的上端口设置有盖子,盖子为圆台形筒状结构,盖子的大端口与筒身的上端口焊接在一起,盖子的小端口作为陶瓷出口安装孔。盖子的圆台母线与其底面的夹角α大于推力器最大羽流角,且盖子的圆台母线与霍尔推力器的放电陶瓷通道出口段圆台母线垂直。

    一种基于ICP内耦合放电的射频离子推力器

    公开(公告)号:CN114922790A

    公开(公告)日:2022-08-19

    申请号:CN202210554919.X

    申请日:2022-05-19

    Abstract: 本发明涉及一种基于ICP内耦合放电的射频离子推力器,属于等离子体推进技术领域。将镀有保护膜的螺旋状线圈置于电离室内,且螺旋状线圈的中心线和电离室的中心线共轴,螺旋状线圈的中心线到电离室的内侧壁的距离与螺旋状线圈的直径相同,可以减小推进工质与射频天线间的距离,改善电离室中的感应电场分布,有效增大电离密度,改善等离子体分布不均的问题,从而能够提高现有射频离子推力器的电离程度,改善推力器性能。

    一种射频离子推力器点火装置

    公开(公告)号:CN113357109B

    公开(公告)日:2022-07-15

    申请号:CN202110734035.8

    申请日:2021-06-30

    Abstract: 本发明提供了一种射频离子推力器点火装置,涉及射频离子推力器技术领域,该装置包括金属进气管、主电离室、副电离室、主线圈、附加线圈和屏栅极。工作状态下,屏栅极接入直流高压电源,同时缠绕在主电离室上的主线圈接入射频功率源,缠绕在副电离室上的附加线圈感应出正弦高压,因金属进气管与附加线圈的一端等电位连接,故屏栅极与金属进气管间的强电场有一半几率被加强;被加强后的电场击穿更多工质成为等离子体,高密度的等离子体扩散至主电离室与未电离的工质加速碰撞,使主电离室内的工质完全电离,降低了主线圈上的射频功率源的输入功率,实现低功率点火操作。

    一种基于微波增强的液体工质等离子体推力器

    公开(公告)号:CN111173698B

    公开(公告)日:2021-01-05

    申请号:CN201811330707.3

    申请日:2018-11-09

    Abstract: 本发明提供了一种基于微波增强的液体工质等离子体推力器,包括设置在陶瓷通道底端的微波谐振腔、伸入至微波谐振腔内部的毛细针尖供液管、为微波谐振腔提供微波的微波发射器、推力器底板和推力器外壳,微波谐振腔通过绝缘陶瓷固定安装在推力器底板上,微波谐振腔的底部作为阳极,在陶瓷通道出口处设置阴极,推力器底板固定在推力器外壳上,在推力器外壳内设有环形永磁体,环形永磁体为三级结构,相邻两级之间设有磁尖端,三级环形永磁体的充磁方向为轴向。本发明通过毛细针尖结构实现液体工质的供给,通过微波谐振使工质汽化预电离,在保持了会切场推力器长寿命的同时,大大提高了推力器的工质利用率和整体效率,实现电推力器在低功率下的高性能。

    一种微阴极电弧推进器
    27.
    发明授权

    公开(公告)号:CN110641740B

    公开(公告)日:2020-12-04

    申请号:CN201911041818.7

    申请日:2019-10-30

    Abstract: 本发明公开一种新型的微阴极电弧推进器,包括绝缘底座、阳极、套设在阳极外部的套层阴极以及底部与绝缘底座一端对接的外壳,阳极与套层阴极之间设置有绝缘体层;绝缘底座另一端设置有向外延伸且间隔分布的阳极接线柱和阴极接线柱,阳极、套层阴极以及绝缘体层均位于外壳内。本发明通过在绝缘底座上设计阳极接线柱和阴极接线柱,同时增设了绝缘体层,使得阴阳两极之间具有更好的绝缘性,有效防止了放电问题,解决了部分由漏电和材料本身产生的机构熔融问题,同时还可大幅降低组装难度和组装时间,增加结构的稳固程度,实用性强。

    一种推力大范围连续可调的微牛级快速响应场发射推力器

    公开(公告)号:CN109751214B

    公开(公告)日:2020-06-16

    申请号:CN201910228765.3

    申请日:2019-03-25

    Abstract: 一种推力大范围连续可调的微牛级快速响应场发射推力器,属于航天微电推进领域,本发明为解决传统针尖式场发声发射推力器通过调节流量改变推力存在响应速度慢的问题。本发明方案:高压电极组设置在上部外壳、下部外壳交界处,k个发射极的根部均穿过高压电极组并浸入至对应的推进剂储罐中,每个推进剂储罐设置一个流量控制器;k个发射极分为m组阵列,高压电极组由m个高压电极板堆叠而成,每相邻两层高压极板之间均设置一层高压绝缘板以实现绝缘;同一阵列中的发射极统一由一块高压电极板实现外部供电,不同阵列中的发射极由不同的高压电极板实现外部供电;通过对m个高压电极板的电压等级的独立调节来实现推力的大范围连续输出。

    一种基于微波增强的液体工质等离子体推力器

    公开(公告)号:CN111173698A

    公开(公告)日:2020-05-19

    申请号:CN201811330707.3

    申请日:2018-11-09

    Abstract: 本发明提供了一种基于微波增强的液体工质等离子体推力器,包括设置在陶瓷通道底端的微波谐振腔、伸入至微波谐振腔内部的毛细针尖供液管、为微波谐振腔提供微波的微波发射器、推力器底板和推力器外壳,微波谐振腔通过绝缘陶瓷固定安装在推力器底板上,微波谐振腔的底部作为阳极,在陶瓷通道出口处设置阴极,推力器底板固定在推力器外壳上,在推力器外壳内设有环形永磁体,环形永磁体为三级结构,相邻两级之间设有磁尖端,三级环形永磁体的充磁方向为轴向。本发明通过毛细针尖结构实现液体工质的供给,通过微波谐振使工质汽化预电离,在保持了会切场推力器长寿命的同时,大大提高了推力器的工质利用率和整体效率,实现电推力器在低功率下的高性能。

    一种多环微阴极电弧推力器

    公开(公告)号:CN110615122A

    公开(公告)日:2019-12-27

    申请号:CN201911041987.0

    申请日:2019-10-30

    Abstract: 本发明公开一种多环微阴极电弧推力器,包括凸台底座、前挡板、阳极和两个以上依次套设在阳极外部的筒状阴极,阳极与筒状阴极、相邻筒状阴极之间均设有绝缘陶瓷进行分隔,凸台底座包括底板和设置在底板上的凸台圆筒,阳极和各筒状阴极均安装在凸台圆筒内,前挡板位于凸台圆筒的前端,凸台圆筒的外周套设一筒状永磁体,前挡板的边缘通过固定螺栓与底板的边缘连接。本发明结构简单合理,通过采用多个同心桶状阴极的设计,使相邻的阴极之间也可以像阴阳极之间一样放电并产生推力,增大了推力器的推力,延长了推力器的寿命,内部结构具有更好的绝缘性,有效防止了真空放电问题,实用性强。

Patent Agency Ranking