一种在盲稀疏条件下压缩感知的频谱检测方法

    公开(公告)号:CN103873170B

    公开(公告)日:2016-02-03

    申请号:CN201410116718.7

    申请日:2014-03-26

    Abstract: 一种在盲稀疏条件下压缩感知的频谱检测方法,本发明涉及一种在盲稀疏条件下压缩感知的频谱检测方法。本发明是要解决在稀疏度未知的条件下的频谱检测问题,而提出的一种在盲稀疏条件下压缩感知的频谱检测方法;该方法是通过步骤一、建立的数学模型进行最优化迭代求解;步骤二、经过简化,得到重构信号的凸优化问题;步骤三、得到的相关性最大的一个元素,并与上次迭代的支撑集进行合并,得到新的支撑集;步骤四、求取残差;步骤五、求取贡献值,输出频谱检测结果等步骤实现的。本发明应用于压缩感知的频谱检测方法。

    基于联合块稀疏模型的信号重构方法

    公开(公告)号:CN109995376B

    公开(公告)日:2023-02-03

    申请号:CN201910350329.3

    申请日:2019-04-28

    Abstract: 本发明提供基于联合块稀疏模型的信号重构方法,属于分布式压缩感知技术领域。本发明首先建立基于混合支撑集模型的联合块稀疏模型,然后利用了基于混合支撑集模型的联合块稀疏模型的结构特点对信号的公共部分进行重构,再使用BOMP算法,逐个重构出每个信号的特有部分,最后将原信号公共部分与特有部分的重构结果相加,完成对原信号的重构。本发明解决了在多天线以及信号稀疏系数成块分布的情况下,接收端如何以低量测值、低信噪比,精确地重构原信号的问题。本发明可用实际通信场景中接收端的信号重构。

    基于稀疏表示最大分量的频谱感知方法

    公开(公告)号:CN110138476B

    公开(公告)日:2021-08-27

    申请号:CN201910430447.5

    申请日:2019-05-22

    Abstract: 本发明提供基于稀疏表示最大分量的频谱感知方法,属于认知无线电中的频谱感知技术领域。本发明首先采用OMP算法第一次迭代,得到稀疏表示的最大分量,对最大分量进行平方操作得到检验统计量;然后,根据要求设定虚警概率,按照设定的虚警概率计算感知门限,最后把得到的检验统计量和感知门限进行比较得到频谱感知结果。本发明解决了现有频谱感知技术在实际应用时,低信噪比情况下频谱感知性能低的缺点。本发明可用于认知无线电中的频谱感知。

    一种基于支持向量机的单比特空间谱估计方法

    公开(公告)号:CN106526565B

    公开(公告)日:2019-02-22

    申请号:CN201611109930.6

    申请日:2016-12-06

    Abstract: 一种基于支持向量机的单比特空间谱估计方法,涉及阵列信号处理中的空间谱估计领域和人工智能中的支持向量机领域。解决了在单比特极端量化和超大规模天线阵情形,传统空间谱估计算法不仅计算量很大,而且精度较差的问题。本发明将大规模天线阵中的单比特空间谱估计建模为一个人工智能中的分类问题,并采用支持向量机方法来求解来波信号的空间谱。本发明提出的算法相对于传统算法的优势在于提高了空间谱估计的精度以及简化了接收机结构,并且能够同时估计多个信号源的角度。本发明用于对空间谱进行估计。

    一种非重构框架下的信号估计方法

    公开(公告)号:CN106411795A

    公开(公告)日:2017-02-15

    申请号:CN201610933561.6

    申请日:2016-10-31

    CPC classification number: H04L25/0202 H04L25/0242

    Abstract: 一种非重构框架下的信号估计方法,属于认知无线电参数识别和估计领域。为了解决现有采用重构算法恢复信号时,存在重构速度慢,准确性差的问题。估计方法包括:建立采样信号循环谱向量 和采样信号循环自相关向量rx的联系;建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系;建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量 的关系;删除采样信号循环谱向量 中的冗余元素,获得简化后的采样信号循环谱向量利用采样信号压缩测量值自相关向量rz和基于块稀疏的正交匹配追踪算法,对简化后的采样信号循环谱向量 进行重构,获得原始信号循环谱;根据原始信号循环谱提取原始信号的参数信息。主要用于提取信号参数信息。

Patent Agency Ranking