-
公开(公告)号:CN109067404A
公开(公告)日:2018-12-21
申请号:CN201810916606.8
申请日:2018-08-13
IPC: H03M7/30
CPC classification number: H03M7/3062
Abstract: 一种基于单比特量化的压缩感知信号盲重构方法,它用于压缩感知信号的重构技术领域。本发明解决了目前的单比特压缩感知必须经过大量计算,才能从仅保留符号位的测量信号中重构出源信号的问题。本发明对输入信号的符号测量值y进行量化,然后利用这些符号数据进行最优支撑集估计,并在最优支撑集上进行一致重建,以便获得更新输入信号的估计值,将前后两次迭代的信号幅度估计值的差值和精度阈值进行对比,来确定迭代是否终止;为防止迭代陷入死循环,设定迭代到最大迭代次数时也停止迭代;根据末次迭代结果确定稀疏度和信号幅度的估计值,实现信号盲重构,本发明方法相比现有方法将计算量减小40%以上。本发明可以应用于压缩感知信号的重构领域用。
-
公开(公告)号:CN109995376A
公开(公告)日:2019-07-09
申请号:CN201910350329.3
申请日:2019-04-28
Applicant: 哈尔滨工业大学
IPC: H03M7/30
Abstract: 本发明提供基于联合块稀疏模型的信号重构方法,属于分布式压缩感知技术领域。本发明首先建立基于混合支撑集模型的联合块稀疏模型,然后利用了基于混合支撑集模型的联合块稀疏模型的结构特点对信号的公共部分进行重构,再使用BOMP算法,逐个重构出每个信号的特有部分,最后将原信号公共部分与特有部分的重构结果相加,完成对原信号的重构。本发明解决了在多天线以及信号稀疏系数成块分布的情况下,接收端如何以低量测值、低信噪比,精确地重构原信号的问题。本发明可用实际通信场景中接收端的信号重构。
-
公开(公告)号:CN109995376B
公开(公告)日:2023-02-03
申请号:CN201910350329.3
申请日:2019-04-28
Applicant: 哈尔滨工业大学
IPC: H03M7/30
Abstract: 本发明提供基于联合块稀疏模型的信号重构方法,属于分布式压缩感知技术领域。本发明首先建立基于混合支撑集模型的联合块稀疏模型,然后利用了基于混合支撑集模型的联合块稀疏模型的结构特点对信号的公共部分进行重构,再使用BOMP算法,逐个重构出每个信号的特有部分,最后将原信号公共部分与特有部分的重构结果相加,完成对原信号的重构。本发明解决了在多天线以及信号稀疏系数成块分布的情况下,接收端如何以低量测值、低信噪比,精确地重构原信号的问题。本发明可用实际通信场景中接收端的信号重构。
-
-