-
公开(公告)号:CN106702315A
公开(公告)日:2017-05-24
申请号:CN201611145219.6
申请日:2016-12-13
Applicant: 厦门理工学院
IPC: C23C10/58
CPC classification number: C23C10/58
Abstract: 本发明公开了一种金属钽表面MoSi2涂层的制备方法,包括:S10,提供钽片基材,并将所述钽片基材进行抛光和清洗以除去其表面的氧化物和杂质;S11,提供渗剂原料,包括活化剂、分散剂、钼粉和硅粉;S12,将所述钼粉、所述活化剂以及所述分散剂按照质量份数比:40‑50:5‑10:40‑55混合行成第一混合物;S13,将所述钽片基材埋入所述第一混合物中,并在保护气氛于1300‑1500℃保温4‑10h,取出后清洗干净;S14,将所述硅粉、所述活化剂以及所述分散剂按照质量份数比:20‑40:5‑18:55‑75混合行成第二混合物;S15,将步骤S13所获得的产物埋入所述第二混合物中,并在保护气氛于1100‑1400℃保温8‑20h,取出后清洗干净,获得含MoSi2涂层的样品。
-
公开(公告)号:CN105597801A
公开(公告)日:2016-05-25
申请号:CN201510610692.6
申请日:2015-09-23
Applicant: 厦门理工学院
IPC: B01J27/22
Abstract: 本发明提供一种碳化钨/碳纳米管复合颗粒的制备方法,包括:将碳纳米管置于强酸溶液中处理以获得改性的碳纳米管;将上述改性的碳纳米管置于仲钨酸铵溶液中,并加入聚乙二醇及一水合柠檬酸并进行搅拌以获得一混合溶液;往上述混合溶液中滴加有机酸直至pH为1.5~2.5,并在60℃~75℃的温度下持续搅拌以形成一溶胶;将上述溶胶在115℃~125℃的真空环境中干燥以形成一凝胶;将上述凝胶制成粉体并过筛,将过筛后的粉体在高纯度的氢气氛围下于550℃~750℃中还原以获得钨碳纳米复合颗粒;以及将上述钨碳纳米复合颗粒在惰性气氛下加热到800℃~1000℃反应,形成碳化钨/碳纳米管复合颗粒。本发明还提供一种上述方法获得的碳化钨/碳纳米管复合颗粒。
-
公开(公告)号:CN118083924A
公开(公告)日:2024-05-28
申请号:CN202410073189.0
申请日:2024-01-18
Applicant: 厦门理工学院
IPC: C01B21/072 , C01B32/05 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及一种球形氮化铝粉体及其制备方法,将市售氮化铝粉体、柠檬酸和无水乙醇装入尼龙球磨罐中,加入氧化铝磨球进行球磨形成浸润浆料,干燥,获得表面形成纳米碳层的氮化铝粉体;将其放入高温炉煅烧后,与球化助剂、炭黑和无水乙醇装入尼龙球磨罐球磨,结束后取出混合粉体,将混合粉体置于干燥箱干燥,结束后取出过筛网;将粉体置于微波煅烧炉中煅烧球化,形成球化氮化铝粉体,放入马弗炉中,煅烧除碳;结束后随炉降温,取出过筛网,即得球形氮化铝粉体。本发明制备的球形氮化铝粉体的球形度≥86%,平均粒径为2‑8μm,比表面积0.53‑0.76m2/g。
-
公开(公告)号:CN116283305B
公开(公告)日:2024-05-28
申请号:CN202211589748.0
申请日:2022-12-12
Applicant: 厦门理工学院
IPC: C04B35/582 , C04B35/622 , C04B35/645
Abstract: 本发明涉及一种氮化铝氮化硼复合陶瓷及其制备方法,包括如下制备步骤:步骤S10,将氮化铝粉末、氮化硼粉末、氧化钙粉末和氧化钇粉末混合,得到的混合粉末装入球磨罐中,同时加入磨球和溶剂进行球磨,形成粉末浆料;步骤S20,将所述粉末浆料进行真空干燥,形成复合粉末;步骤S30,将所述复合粉末在保护气氛下进行热压烧结。该制备方法可以有效去除了产品杂质,显著降低了氧含量,净化了氮化铝晶界,制得的氮化铝氮化硼复合陶瓷拥有优异的导热性能,可以广泛运用于大功率LED器件和5G通讯等复杂形状的对导热性能要求高的散热器件领域。
-
公开(公告)号:CN114874019B
公开(公告)日:2023-04-07
申请号:CN202210703501.0
申请日:2022-06-21
Applicant: 厦门理工学院
IPC: C04B35/71 , C04B35/581 , C04B35/622 , C04B35/645
Abstract: 本发明涉及一种立方氮化硼相变增强的氮化铝/氮化硼复合陶瓷及其制备方法,包括:S10将氮化铝粉末、立方氮化硼粉末和六方氮化硼粉末混合形成浆料;S20将所述浆料干燥形成复合粉末;S30将所述复合粉末进行热压烧结形成氮化铝/氮化硼陶瓷。本发明以氮化铝、立方氮化硼和六方氮化硼为原料,利用高温烧结过程中,立方氮化硼将相变为洋葱结构的六方氮化硼,避免引入第二相杂质,同时伴随明显的体积膨胀效应,使氮化铝/氮化硼复合陶瓷的致密度和力学性能得到有效提高,各向异性显著减少,氮化铝/氮化硼复合陶瓷拥有优异的力学性能,可解决现有的氮化铝/氮化硼复合陶瓷致密度较低、强度不高和各向异性明显等问题。
-
公开(公告)号:CN109721368B
公开(公告)日:2021-06-25
申请号:CN201910183202.7
申请日:2019-03-12
Applicant: 厦门理工学院
IPC: C04B35/58 , C04B35/622 , C04B35/626
Abstract: 本发明涉及一种碳氮化钛粉末及可水解性钛源制备碳氮化钛的方法,以可水解性钛源为钛源,炭黑为碳源,曲拉通X‑100或十六烷基三甲基溴化铵为表面活性剂,环己烷为水解缓冲剂,氨水为沉淀剂,其制备工艺流程为:配置乳液→滴入氨水→悬浊液抽滤、洗涤,干燥→前驱体粉末预处理→碳热氮化还原→碳氮化钛。该方法不使用球磨混料,可实现大批量生产,产物粒径为200~300nm,纯度大于99%,制备成本低,为碳氮化钛提供了一种新的合成路径。
-
公开(公告)号:CN112939608A
公开(公告)日:2021-06-11
申请号:CN202110366070.9
申请日:2021-04-06
Applicant: 厦门理工学院
IPC: C04B35/582 , C04B35/645
Abstract: 本发明涉及一种白色氮化铝陶瓷及其热压烧结方法和用途,包括将氮化铝粉末、氮化硼粉末和溶剂混合,获得混合浆料,所述氮化硼粉末占氮化铝粉末和氮化硼粉末总重的3%~10%;将所述混合浆料进行干燥,之后进行热压烧结,所述热压烧结采用石墨模具,热压烧结温度为1826℃~1930℃,保温时间为3h~10h,加载压力为20MPa~25MPa,保温结束后卸掉压力,降温获得白色氮化铝陶瓷,上述烧结全程在压力的1.2KPa~1.6KPa的氮气气氛下进行。本发明可解决氮化铝陶瓷热压烧结技术中存在的产品颜色发黑问题,获得致密度高,颜色为白色的氮化铝陶瓷制品,同时可避免使用价格昂贵的氮化硼坩埚,而且烧结时间短,可大大降低烧结制备成本。
-
公开(公告)号:CN109249014B
公开(公告)日:2021-04-27
申请号:CN201811175674.X
申请日:2018-10-10
Applicant: 厦门理工学院
Abstract: 本发明涉及一种用于制备高密度耐腐蚀发动机连杆的组合物及发动机连杆的制备方法,用于制备高密度耐腐蚀发动机连杆的组合物包括以重量份数计的以下各组分:铁粉90‑100份,镍粉1‑10份,钼粉0.1‑1份,铜粉0.1‑1份,镉粉0.05‑0.5份,锰粉0.05‑0.5份,石蜡1‑5份,聚丙烯0‑1份,高密度聚乙烯0.05‑1份,聚苯乙烯0‑1份,表面活性剂0.1‑0.5份,润滑剂0.3‑0.9份。本发明采用温压技术,生产所述的高密度耐腐蚀发动机连杆的成本低,有利于提升汽车发动机性能、降低生产成本、减轻重量、节能降耗。对促进温压技术在国内汽车零部件生产中的推广应用,具有非常重要的意义。
-
公开(公告)号:CN111842920A
公开(公告)日:2020-10-30
申请号:CN202010770920.7
申请日:2020-08-04
Applicant: 厦门理工学院
Abstract: 本发明提供一种纳米尺度高性能硬质合金抑制剂及其制备方法,包括如下步骤:S1将钒源、铬源、碳源、燃料和氧化剂按照摩尔比1:1:(1:4):(2~10):(8~12)进行配比后溶于去离子水中,充分溶解配置成水溶液,将溶液在电阻炉上加热直至发生燃烧反应,得到含有钒源、铬源和碳源前驱体粉末。S2将经过S1处理获得的前驱体粉末于高温炉中,在保护气氛下进行高温反应后,获得一种纳米尺度高性能硬质合金抑制剂。本发明提供了一种低成本、工艺简单且粒度细小、混合分散均匀的前驱物的制备方法,解决碳热还原反应温度比较高及常规冶金粉末比表面积小等难点问题。本发明涉及粉末冶金纳米粉末制备技术领域。
-
公开(公告)号:CN110642293A
公开(公告)日:2020-01-03
申请号:CN201910836722.3
申请日:2019-09-05
Applicant: 厦门理工学院
IPC: C01G31/00 , H01M4/485 , H01M10/0525
Abstract: 本发明提供一种氧空位Li3VO4锂离子电池负极材料及其制备方法,涉及锂离子电池材料技术领域。其制备方法为将五氧化二钒和水合氢氧化锂在乙醇溶液中搅拌反应,然后干燥得到前驱物。对前驱物进行研磨,得到研磨产物。将研磨产物在氮气气氛下,于550~650℃条件下烧结1~2h得到氧空位Li3VO4锂离子电池负极材料。该制备方法简单易行,研磨后的产物在氮气氛围下煅烧,能够在材料表层形成氧空位,产物的比表面积高,能够降低充放电过程中相变活化能,改善Li3VO4的化学性能。
-
-
-
-
-
-
-
-
-