-
公开(公告)号:CN118214406A
公开(公告)日:2024-06-18
申请号:CN202410411936.7
申请日:2024-04-08
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H03K17/081 , H03K17/687
Abstract: 本发明涉及一种基于可控栅极电流的SiC MOSFET有源栅极驱动电路,针对双脉冲测试电路(8)中所包含的待测试SiC MOSFET U1,基于依次经驱动电压提供电路(1)、电流转换电路(2)提供驱动电流至电流推挽放大电路(3),并结合可控电流过冲抑制电路(4)检测产生可控的电流过冲抑制电流,以及电压过冲抑制电路(5)检测产生电压过冲抑制电流,由电流推挽放大电路(3)放大驱动电流,对待测试SiC MOSFET U1实现驱动;设计方案实现可控的栅极电流控制,从而在待测试SiC MOSFET U1开关过程中,有序的开启和关断,更加有效的抑制电流电压过冲现象。
-
公开(公告)号:CN117766588B
公开(公告)日:2024-04-30
申请号:CN202410196269.5
申请日:2024-02-22
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L29/08 , H01L29/06 , H01L21/336
Abstract: 本发明提出了一种具有延伸漏结构的超结双SOI‑LDMOS器件及制造方法,该器件包括:位于第二埋氧层上的第二SOI层,包括半导体区和半导体延伸漏接触区;位于第一埋氧层上的第一SOI层,包括体接触区、源区、漏区以及漂移区;漏极金属,其中漏极金属的第一部分平行于器件纵向的一侧面与第一埋氧层接触,其下表面与半导体延伸漏接触区的上表面;漏极金属的第二部分与半导体漏区的上表面接触。本发明在器件导通时利用第二SOI层中交替排列的第一半导体区和第二半导体区和延伸漏结构,使得第一SOI层漂移区表面感应出多数载流子,降低了比导通电阻;也在器件关断时改善了漂移区的势场分布从而提高了击穿电压。
-
公开(公告)号:CN116053302A
公开(公告)日:2023-05-02
申请号:CN202310208764.9
申请日:2023-03-07
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明提出了一种基于双SOI结构的背栅辅助RESURF系统及双SOI结构的制造方法,包括双SOI结构和外围背栅自动电压优化控制电路,其中外围背栅自动电压优化控制电路可对双SOI结构的背栅进行电压控制。本发明与传统的RESURF技术相比,在击穿电压不改变的情况下,降低了导通电阻,改进了两者之间的折中关系,同时也提升了双SOI结构的直流、射频以及开关性能。
-
公开(公告)号:CN113097308B
公开(公告)日:2022-09-23
申请号:CN202110351306.1
申请日:2021-03-31
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L21/336 , H01L29/51
Abstract: 本申请涉及一种不同材料铁电层的负电容场效应晶体管及制备方法。该晶体管包括:衬底、埋氧化层、基于顶层形成的源区、基于顶层形成的漏区、基于顶层形成的全耗尽或部分耗尽的沟道、侧墙,以及源区漏区之间通过侧墙隔离的栅氧化层、负电容铁电层、金属层,其特征在于:所述负电容铁电层由第一铁电层和第二铁电层拼接而成,所述第一铁电层和所述第二铁电层的铁电材料不同,使得栅极不同材料的负电容铁电层对栅极电压放大作用呈线性放大,对栅极电压放大作用具有更好的控制能力,同时不同材料铁电层的负电容场效应晶体管在相同的栅压下具有更高的饱和区电流以及更低的亚阈值斜率,亚阈值斜率可以低于理论极限值60mV/dec,因此提升了晶体管的性能。
-
公开(公告)号:CN107863387B
公开(公告)日:2021-03-23
申请号:CN201710896043.6
申请日:2017-09-27
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明提供了一种横向功率器件的高压互连结构,它在功率器件的漂移区内部引入具有高介电常数的绝缘体区域,利用该区域来调制高压互连线引起的表面电场分布,大大增强了器件在具有高压互连线时的耐压能力,提高了器件的性能。本发明可用于横向扩散场效应晶体管LDMOS、横向PN二极管、或横向绝缘栅双极型晶体管LIGBT,工艺简单,成本低廉。
-
公开(公告)号:CN110045260A
公开(公告)日:2019-07-23
申请号:CN201910265898.8
申请日:2019-04-03
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: G01R31/26
Abstract: 本发明提供了一种半导体器件虚拟测试平台及半导体器件虚拟测试方法,用于对半导体器件进行电学性能测试,所述半导体器件虚拟测试平台包括运用VI技术开发的虚拟测试程序及虚拟测试界面,所述虚拟测试程序包括:数据输入及存储模块,测试程序运行模块,测试结果显示模块,参数提取模块及停止模块。本发明通过联合TCAD和VI技术,构建半导体器件并编译不同半导体器件的不同电学性能测试程序,无需配备昂贵的测试仪器,节省实验成本,而且所述半导体器件虚拟测试平台简单易懂,操作方便。
-
公开(公告)号:CN108054194A
公开(公告)日:2018-05-18
申请号:CN201711234307.8
申请日:2017-11-30
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明公开了一种具有三维横向变掺杂的半导体器件耐压层,该耐压层在半导体器件的半导体衬底或埋氧层的上表面外延形成,及所述耐压层具有三维横向变掺杂并且在以P+或N+为中心的曲率结构中掺杂浓度为非线性分布。所述耐压层采用叉指状版图或跑道形版图或圆形版图;所述耐压层采用硅或碳化硅、砷化镓、磷化铟、锗硅材料制作;本发明的耐压层能够按照标准的CMOS工艺制备,因此该工艺是一个与标准CMOS工艺完全兼容的工艺方案,工艺制备简单,成本低廉,可以有效抑制版图所带来的三维曲率效应,从而大大增强实际器件的耐压能力。
-
公开(公告)号:CN119835964A
公开(公告)日:2025-04-15
申请号:CN202411983946.4
申请日:2024-12-31
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明属于功率半导体技术领域,公开了一种衬底电压调控GaN HEMT功率器件,包括沿器件垂直方向自下而上依次层叠设置的P衬底、GaN缓冲层、GaN沟道层、AlGaN势垒层、钝化层和浮空场板结构;沿器件横向方向,在AlGaN势垒层表面依次为相互不接触的源电极、栅极结构和漏电极;所述浮空场板结构包括若干个互不接触的浮空场板,所述P衬底与浮空场板结构中任意一个场板通过金属相连接,使其电位相同,浮空场板电压可调控衬底电压,实现高耐压和抑制动态电阻退化。本发明的有益效果为,在不增加导通电阻的情况下,具有高的耐压且抑制动态电阻崩塌,不增加额外工艺步骤,且不会额外增加芯片面积,节约了成本。
-
公开(公告)号:CN117766588A
公开(公告)日:2024-03-26
申请号:CN202410196269.5
申请日:2024-02-22
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L29/08 , H01L29/06 , H01L21/336
Abstract: 本发明提出了一种具有延伸漏结构的超结双SOI‑LDMOS器件及制造方法,该器件包括:位于第二埋氧层上的第二SOI层,包括半导体区和半导体延伸漏接触区;位于第一埋氧层上的第一SOI层,包括体接触区、源区、漏区以及漂移区;漏极金属,其中漏极金属的第一部分平行于器件纵向的一侧面与第一埋氧层接触,其下表面与半导体延伸漏接触区的上表面;漏极金属的第二部分与半导体漏区的上表面接触。本发明在器件导通时利用第二SOI层中交替排列的第一半导体区和第二半导体区和延伸漏结构,使得第一SOI层漂移区表面感应出多数载流子,降低了比导通电阻;也在器件关断时改善了漂移区的势场分布从而提高了击穿电压。
-
公开(公告)号:CN117713511A
公开(公告)日:2024-03-15
申请号:CN202410079715.4
申请日:2024-01-19
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H02M1/08 , H03K17/042 , H03K17/082 , H03K17/12 , H03K17/687 , H02M1/00
Abstract: 本发明涉及一种单电源可调驱动电阻SiC MOSFET驱动电路,包括电源电路、可变栅极电阻驱动电路、以及用于测试目标SiC MOSFET Q5开关特性的双脉冲测试电路,通过在目标SiC MOSFET Q5开通/关断过程的不同阶段切换不同的驱动电阻,提高了目标SiC MOSFET Q5的开通/关断速度,其中在器件开通/关断的漏源电流变化的时期,采用一个电阻对目标SiC MOSFET Q5栅极进行充电和放电,减小器件开通/关断延时,提高电压和电流的上升速率。在器件开通/关断的其余时期增大驱动电阻抑制目标SiC MOSFET Q5开关过程中的电压和电流尖峰和振荡,相比于传统驱动电路,能够在有效抑制电压、电流超调和振荡的同时保持较低的开关损耗,提高目标SiC MOSFET Q5的栅极驱动性能,并且电路结构简单,易于实现。
-
-
-
-
-
-
-
-
-