-
公开(公告)号:CN114077168A
公开(公告)日:2022-02-22
申请号:CN202210009224.3
申请日:2022-01-06
Applicant: 之江实验室
Abstract: 本发明涉及光学技术领域,具体公开了一种基于光镊微球的超分辨激光直写与实时成像方法和装置,包括激光器、准直扩束系统、空间光调制器、4f缩束系统、二向色镜、显微物镜、微球、直写基底、三维可控精密位移台、照明光源、照明模块及相机等,所述的激光器出射光经过扩束准直后入射到加载有相位全息图的空间光调制器上面,调制后的光斑经过4f缩束系统入射到显微物镜,在显微物镜焦面形成聚焦光斑阵列同时捕获多个微球,利用微球强聚焦特性配合相位全息图变化,在直写基底上面进行任意图案的高通量超分辨激光直写;同时,微球结合显微物镜可对超分辨激光直写结构进行实时成像,图像由相机采集,实现基于光镊微球的超分辨激光直写与实时成像。
-
公开(公告)号:CN113960892A
公开(公告)日:2022-01-21
申请号:CN202111248690.9
申请日:2021-10-26
IPC: G03F7/20
Abstract: 本发明公开了一种可连续像旋转调制的高速并行激光直写光刻的方法与装置,本发明装置利用像旋转器对多光束排布方向进行旋转,使得多光束排布方向与转镜扫描方向连续可调,实现了五种不同的高速扫描策略。本发明基于上述五种不同扫描策略,有效解决了现有并行激光直写由于扫描策略单一导致扫描效果与扫描速度不佳的问题。本发明针对不同应用,使用不同扫描策略,实现扫描速度与扫描质量的双重提升。
-
公开(公告)号:CN113960891A
公开(公告)日:2022-01-21
申请号:CN202111248686.2
申请日:2021-10-26
IPC: G03F7/20
Abstract: 本发明公开了一种并行穿插超分辨高速激光直写光刻的方法与装置。本发明方法使用并行穿插算法,首先基于刻写光空间光调制器产生刻写用多光束实心光斑;基于抑制光空间光调制器产生抑制用多光束空心光斑;然后将多光束实心光斑与多光束空心光斑合束产生调制后的多光束光斑;再基于多通道声光调制器输出刻写波形,位移台匀速移动直到完成一整列区域刻写,关闭光开关,位移台进行一次步进移动;直到所有图形刻写完成。本发明装置基于并行穿插扫描策略,有效解决了现有并行转镜激光直写光刻系统由于扫描策略过于简单而导致刻写效率低下的问题。同时,基于边缘光抑制原理获得超分辨效果,提升了现有双光子激光直写光刻的刻写精度。
-
公开(公告)号:CN113909698A
公开(公告)日:2022-01-11
申请号:CN202111248661.2
申请日:2021-10-26
IPC: B23K26/362 , B23K26/082 , B23K26/064
Abstract: 本发明公开了一种并行穿插高速激光直写光刻的方法与装置。本发明方法使用并行穿插算法,包括步骤:1)基于刻写光空间光调制器产生刻写用多光束实心光斑;2)基于多通道声光调制器输出刻写波形,首先只输出第Nbeams束光的刻写波形;3)经过n次扫描后开始输出第Nveams‑1束光的刻写波形;4)再经过n次扫描后开始输出第Nbeams‑2束光的刻写波形;5)重复步骤3)‑4)直到所有光束波形都开始输出。本发明装置基于并行穿插扫描策略,有效解决了现有并行转镜激光直写光刻系统由于扫描策略过于简单而导致刻写效率低下的问题。
-
公开(公告)号:CN113189848A
公开(公告)日:2021-07-30
申请号:CN202110428517.0
申请日:2021-04-21
IPC: G03F7/20
Abstract: 本发明公开了一种基于光纤阵列的多通道并行式超分辨直写式光刻系统,通过激发光的双光子效应引发负性光刻胶的光聚合,以及引入抑制光束阻止激发光焦斑边缘位置的光刻胶进行光聚合,使直写式光刻的最小特征尺寸突破光学衍射极限限制;并通过光纤阵列和普通空间光学器件实现多通道并行直写,极大地提升直写式光刻系统的运行效率。本发明使用普通市售的光纤及空间光学器件构建系统,可行性高、实现成本低。
-
公开(公告)号:CN112596349A
公开(公告)日:2021-04-02
申请号:CN202110046632.1
申请日:2021-01-14
IPC: G03F7/20
Abstract: 本发明公开一种基于多点阵产生和独立控制的双光子并行直写装置及方法,主要包含三个核心元件:数字微镜阵列DMD、空间光调制器SLM和微透镜阵列MLA,DMD将有效像素区域等分成N×N个单元,一个单元对应一个光斑,对DMD每个单元包含的m×m个微镜进行独立开关,实现各单元光斑强度和均匀度的独立调控;SLM将有效像素区域等分成N×N个单元,并与入射的各单元光斑一一对应并独立进行相位控制;MLA用于生成焦点阵列,其微透镜数N×N决定了点阵的数量,该点阵随后经凸透镜和物镜成像到物镜焦平面上进行加工,该装置与方法具有灰度光刻的功能,能够快速加工任意形状且高均匀度的曲面结构及真三维微结构,可应用于超分辨光刻等领域。
-
-
-
-
-