一种任务分配的方法、装置、存储介质及电子设备

    公开(公告)号:CN116307575A

    公开(公告)日:2023-06-23

    申请号:CN202310253543.3

    申请日:2023-03-09

    Abstract: 本说明书公开了一种任务分配的方法、装置、存储介质及电子设备。所述任务分配的方法包括:接收任务处理请求,根据所述任务处理请求,确定待处理任务的任务信息,识别所述待处理任务中所涉及的实体对象,以及从所述任务信息中提取出目标数据,所述目标数据用于表征所述待处理任务的重要程度,根据所述目标数据以及所述实体对象,确定所述待处理任务的任务类型,基于所述任务类型,根据获取到的各处理人员当前的工作状态信息、所述待处理任务的任务特征和所述各处理人员的历史工作信息中的至少一种,确定负责处理所述待处理任务的处理人员,作为目标人员,并将所述待处理任务分配给所述目标人员所使用的终端设备。

    一种数据查询的方法、装置、存储介质及电子设备

    公开(公告)号:CN116303625A

    公开(公告)日:2023-06-23

    申请号:CN202310557261.2

    申请日:2023-05-17

    Abstract: 本说明书公开了一种数据查询的方法、装置、存储介质及电子设备,获取原始数据表,根据预设的知识图谱,确定出原始数据表中包含的实体信息并标注,得到标注后数据表;将标注后数据表和知识图谱输入到预设的分类模型中,以使分类模型确定出原始数据表中各列数据对应的实体类型和原始数据表中各列数据对应的实体类型之间的关系,作为实体类型关系。根据实体类型关系以及标注后数据表中包含的实体信息,确定补充信息。通过补充信息,补充原始数据表,得到补充后数据表;接收数据查询请求,从数据查询请求中确定出用于描述用户需要查询的查询参考信息,以及根据查询参考信息和补充后数据表中包含的第一描述信息和/或第二描述信息,执行数据查询。

    一种面向多任务知识融合的模型训练方法及装置

    公开(公告)号:CN116091895A

    公开(公告)日:2023-05-09

    申请号:CN202310361997.2

    申请日:2023-04-04

    Abstract: 本说明书公开了一种面向多任务知识融合的模型训练方法及装置。首先,获取图像数据。其次,根据待训练的目标识别模型中的特征块数量,对预先训练的各识别模型进行恒等变换,得到各等量特征块识别模型。然后,针对目标识别模型中包含的每个特征块,从各等量特征块识别模型中确定出与该特征块相对应的特征块,作为目标特征块,将各目标特征块输出的图像特征进行拼接,得到该特征块对应的拼接后图像特征,并将该特征块输出的图像特征与该特征块对应的拼接后图像特征之间的偏差,作为该特征块对应的偏差。最后,以最小化各特征块对应的偏差为优化目标,对目标识别模型进行训练。本方法可以使得目标识别模型能够同时解决预先训练的各识别模型的任务。

    一种化学反应式识别方法、装置、存储介质及设备

    公开(公告)号:CN119207609B

    公开(公告)日:2025-04-18

    申请号:CN202411728782.0

    申请日:2024-11-28

    Abstract: 本说明书公开了一种化学反应式识别方法、装置、存储介质及设备,服务器可以从文档中智能地自动识别化学反应式,进而能够根据化学反应式中化学分子式的物种名称,精准地获取其相应的SMILES结构信息,并补全化学反应式中缺失的SMILES结构信息,以确保最终生成的是以SMILES形式完整表达的化学反应式。此外,服务器在最终输出以SMILES形式完整呈现的化学反应式之前,进行了化学反应式的有效性验证。从而极大地提升了信息识别的精确度和可靠性。

    成绩的预测方法、装置、电子设备及存储介质

    公开(公告)号:CN117764165A

    公开(公告)日:2024-03-26

    申请号:CN202311546843.7

    申请日:2023-11-17

    Abstract: 本公开提供一种成绩的预测方法、装置、电子设备及存储介质,包括:获取目标用户的用户信息,其中所述用户信息包括若干实体信息和所述若干实体信息间的关系信息;基于所述若干实体信息和所述关系信息生成知识图谱;基于所述知识图谱确定所述目标用户的实体向量以及成绩向量;基于所述实体向量以及所述成绩向量对所述目标用户的成绩进行预测,并得到预测结果。本公开中,首先获取了用户的实体信息以及实体间的关系信息,之后基于此实体信息以及关系信息生成了知识图谱,然后又在此知识图谱中确定了用户的实体向量以及成绩向量,最后通过实体向量以及成绩向量,并使用预设的神经网络模型对用户的成绩进行了预测,并得到了预测结果。

    一种基于大语言模型的问答数据构建方法及装置

    公开(公告)号:CN117591661A

    公开(公告)日:2024-02-23

    申请号:CN202410076463.X

    申请日:2024-01-18

    Abstract: 本说明书公开了一种基于大语言模型的问答数据构建方法及装置,可以从知识图谱中提取出基础三元组以及从文档库中提取出文本素材,而后,可以根据文本素材,对基础三元组进行补充,得到三元组集合;针对三元组集合中的每个三元组,可以确定该三元组的关联三元组以及从文本素材中确定出该三元组的关联文本段落,以得到多源知识数据。而后,可以根据多源知识数据,生成问答数据,可以对生成的问答数据进行标注,从而通过半监督的方式训练识别模型,以通过识别模型从问答数据中筛选出有效的问答数据,筛选出的有效的问答数据可以用于对大语言模型进行训练或微调,从而本方法能够提到生成问答数据的效率和有效性。

    一种基于线性变换的预训练模型微调方法和装置

    公开(公告)号:CN117574982A

    公开(公告)日:2024-02-20

    申请号:CN202410060305.5

    申请日:2024-01-16

    Abstract: 一种基于线性变换的预训练模型微调方法和装置,其方法包括:收集与下游任务的相关图像数据,对图像数据划分训练集、验证集,并进行适当的预处理,选择合适的预训练模型,修改该模型的任务头,以适配下游任务,并冻结预训练模型的骨干部分;在相邻层间插入线性变换模块,所述线性变换模块用于对特征的缩放和平移;利用下游任务的数据微调预训练模型,保存在验证集上表现最优的模型权重;利用重参数技术将线性变换模块的参数融入到相邻层中,最后部署模型,完成下游任务。本发明引入的待学习参数少,在多种下游任务上,能够实现更高的准确率,并且,在模型推理阶段采用重参数技术将引入的参数融入了模型骨干层中,极大地简化了模型的部署。

    一种图像分类模型的训练方法、装置、介质及电子设备

    公开(公告)号:CN117237744B

    公开(公告)日:2024-01-30

    申请号:CN202311497032.2

    申请日:2023-11-10

    Abstract: 本说明书公开了一种图像分类模型的训练方法、装置、介质及电子设备,包括:获取各样本图像,以及确定各样本图像分别在预设的各目标类别中所属的类别,并作为各样本图像分别对应的标注。基于各样本图像以及各标注,对预先训练的第一模型进行训练,得到第二模型。融合各样本图像中不同类别的样本图像,得到训练样本。根据训练样本以及第二模型,确定训练样本对应的标准特征。将训练样本输入第一模型,确定训练样本对应的样本特征。至少根据样本特征以及标准特征,对第一模型进行训练,并将训练完成的第一模型作为图像分类模型,增强图像分类模型的表征能力,提高图像分类模型的输出结果的准确性。(56)对比文件Thangarajah Akilan et al..Fusion oftransfer learning features and itsapplication in image classification《.2017IEEE 30th Canadian Conference onElectrical and Computer Engineering(CCECE)》.2017,第1-5页.

    一种基于人工智能的事实验证方法、装置、介质及设备

    公开(公告)号:CN117390163A

    公开(公告)日:2024-01-12

    申请号:CN202311404467.8

    申请日:2023-10-26

    Abstract: 本说明书公开了一种基于人工智能的事实验证方法,通过根据待验证的三元组生成搜素语句,并在预设的搜索引擎中对搜索语句进行搜索,筛选预设的搜索引擎返回的搜索结果,根据筛选出的搜索结果生成提示信息,然后再根据提示信息和待验证的三元组生成输入文本,使得人工智能对话系统可根据输入文本对待验证的三元组进行事实验证,接收人工智能对话系统返回的验证结果。根据确定提示信息对待验证的三元组进行验证,减少了人工智能对话系统编造问题答案的可能性,即解决了人工智能对话系统在进行对话时出现“幻觉”的问题,提高了事实验证任务的准确度和可信度。

Patent Agency Ranking