-
公开(公告)号:CN119091861B
公开(公告)日:2025-05-13
申请号:CN202411149307.8
申请日:2024-08-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/183 , G10L15/26 , G10L21/0232 , G10L19/26
Abstract: 本发明涉及语音转写领域,尤其涉及基于人工智能的语音转写加速方法,包括以下步骤:(S1)获取原始语音数据,对获取的原始语音数据先预处理再增强处理,对增强后的语音数据进行特征提取,得到语音特征,基于语音特征进行语音识别,得到识别结果;(S2)根据识别结果生成初步转写文本,通过自适应动态文本优化算法对初步撰写文本进行优化,得到优化后的转写文本,同时在转写过程中通过优化加速算法优化转写效率。本发明公开的基于人工智能的语音转写加速方法,减少了背景噪声和其他干扰,提高了最终撰写文本的准确性和速度。
-
公开(公告)号:CN119091861A
公开(公告)日:2024-12-06
申请号:CN202411149307.8
申请日:2024-08-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/183 , G10L15/26 , G10L21/0232 , G10L19/26
Abstract: 本发明涉及语音转写领域,尤其涉及基于人工智能的语音转写加速方法,包括以下步骤:(S1)获取原始语音数据,对获取的原始语音数据先预处理再增强处理,对增强后的语音数据进行特征提取,得到语音特征,基于语音特征进行语音识别,得到识别结果;(S2)根据识别结果生成初步转写文本,通过自适应动态文本优化算法对初步撰写文本进行优化,得到优化后的转写文本,同时在转写过程中通过优化加速算法优化转写效率。本发明公开的基于人工智能的语音转写加速方法,减少了背景噪声和其他干扰,提高了最终撰写文本的准确性和速度。
-
公开(公告)号:CN119046775A
公开(公告)日:2024-11-29
申请号:CN202411131128.1
申请日:2024-08-17
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2411 , G06F18/213 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及信息技术领域,具体公开了一种基于图神经网络的异常用户分类方法,包括:S1、数据预处理与图构建,S2、节点表示分解,S3、生成基于同配度矩阵的伪标签,S4、信号聚合,S5、模型设计,S6、损失函数设计和S7、节点分类方法;本发明使用Weisfeiler‑Lehman同构测试和同配度矩阵的伪标签生成方法,能够有效地减少训练时间和计算资源,高效的信号聚合方法也使得推理过程更加快速;通过分解节点表示和伪标签生成的方法,使得模型在做出决策时更加透明,可以理解模型是如何利用同配性和异配性信息进行判断的,从而增加了模型的可解释性和精度。
-
公开(公告)号:CN115083423B
公开(公告)日:2022-11-15
申请号:CN202210861979.6
申请日:2022-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本公开涉及一种语音鉴别的数据处理方法和装置,涉及语音识别技术、人工智能和计算机技术领域,上述数据处理方法包括:获取待鉴别音频;对上述待鉴别音频进行特征提取,得到初始声学特征;对上述初始声学特征进行量化处理,得到量化声学特征;将上述量化声学特征输入至目标语音鉴别模型中进行处理,输出得到上述待鉴别音频的真伪结果,上述目标语音鉴别模型为参数预训练好且经过量化后的语音鉴别模型。在确保语音真伪鉴别准确率的基础上能够提升语音真伪鉴别的鉴别速度,提升数据处理的效率。
-
-
-