-
公开(公告)号:CN109368697B
公开(公告)日:2021-03-02
申请号:CN201811555377.8
申请日:2018-12-18
Applicant: 青海省博鸿化工科技股份有限公司 , 中国科学院过程工程研究所
IPC: C01G37/02
Abstract: 本发明提供了一种氧化铬及其制备方法,所述方法包括:将含有晶种的六价铬盐溶液加入反应装置中,通入保护性气体后密闭升温,达到目标温度后持续通入还原性气体发生反应,得到混合浆料;将所得混合浆料固液分离,得到的羟基氧化铬粉体进行煅烧处理,得到氧化铬。本发明采用水热还原法由六价铬盐制备氧化铬,通过晶种的添加、对还原性气体及反应条件的调控,提高还原反应速率,增强反应过程的可控性,还原率可达99.2%以上,所得还原产物物相均一,粒度分布较窄,所得氧化铬产品品质较高,可达到颜料级氧化铬的标准;所述方法流程短、能耗及成本低,无污染物排放,是一种清洁生产工艺,具有显著的经济效益。
-
公开(公告)号:CN112358279A
公开(公告)日:2021-02-12
申请号:CN202011191406.4
申请日:2020-10-30
Applicant: 煜环环境科技有限公司 , 中国科学院过程工程研究所
IPC: C04B33/132 , C04B33/138 , C04B33/32
Abstract: 本发明涉及一种利用重有机污染土壤和有色金属冶炼渣制备超轻陶粒的方法。所述超轻陶粒的制备方法包括如下步骤:(1)将重有机污染土壤和有色金属冶炼渣配比混合,得到混合材料;(2)将步骤(1)所述混合材料进行造粒,焙烧,得到超轻陶粒。本发明可以实现以重有机污染土壤和有色金属冶炼渣为原料,经过混料、造粒、干燥、焙烧、冷却等步骤,通过控制原辅料配比和焙烧工艺参数,制备出具有堆积密度低、吸水率低、浸出液有机物含量和重金属含量均满足要求的超轻陶粒,实现两种废物的无害化和资源化。
-
公开(公告)号:CN112338198A
公开(公告)日:2021-02-09
申请号:CN202011182510.7
申请日:2020-10-29
Applicant: 中国科学院过程工程研究所
IPC: B22F9/22 , G02F1/13357 , F02K1/82 , H01J25/50 , H01J23/04
Abstract: 本发明提供一种微米级钼粉及其制备方法与应用,所述制备方法包括以下步骤:(1)混合含氧气体与含钼杂化物固体,进行气固氧化反应,得到中间固体;(2)混合氢气与步骤(1)所得中间固体,进行气固氢还原反应,得到微米级钼粉。所述微米级钼粉可用于制备液晶显示屏背光源钼电极、微波炉磁控管钼阴极组件或空间发动机用钼合金喷嘴和喉管。本发明提供的制备方法操作简单,所得产物具备粒度均匀、分散性好等特点,并能实现不同形貌钼粉颗粒的可控制备,具有较好的工业应用前景。
-
公开(公告)号:CN112063860A
公开(公告)日:2020-12-11
申请号:CN202010899747.0
申请日:2020-08-31
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种从含铬物料中提取铬的方法,所述方法包括以下步骤:将含铬物料与铵盐进行混合后在含有水蒸气的非氧化性气氛中进行焙烧,所述非氧化性气氛包括保护性气体,得到焙烧熟料和尾气;将得到的焙烧熟料与水混合进行浸出,固液分离,得到浸出液和浸出渣,所述浸出渣返回,与含铬物料混合。本发明所述方法采用铵盐焙烧技术,使铬元素转化为易溶于水的含铬化合物,最后通过水浸处理实现对铬的高效提取;所述方法能耗小、操作简单、浸出渣排放量小、环保节能,铬的浸出率可达到95%以上,具有较好的工业应用前景。
-
公开(公告)号:CN110407976B
公开(公告)日:2020-08-21
申请号:CN201810392789.8
申请日:2018-04-27
Applicant: 中国科学院过程工程研究所
IPC: C08F222/14 , C08F220/06 , C08F212/36 , C08J9/26 , B01D15/02 , B01D15/08 , B01J20/26 , B01J20/34
Abstract: 本发明提供了一种铁离子印迹聚合物的制备方法,所述制备方法包括:将丙烯酸类单体与无机铁盐溶于溶剂中,聚合反应后,去除无机铁盐,得到所述铁离子印迹聚合物。本发明还提供了一种铁离子印迹聚合物及其用途。本发明所提供的制备方法,制备得到的铁离子印迹聚合物内部是由小颗粒组成的多孔结构,除铁率高,可达到90%以上,而在同样的吸附条件下,现有的萃取吸附等方法,除铁率仅有不到20%。此外,本发明中铁离子印迹聚合物吸附容量大,吸附容量最高可达到114.25mg/g;相对选择性系数为1‑150,选择性高;并且可再生重复使用,是一种性能优良的吸附剂,具有良好的应用前景。
-
公开(公告)号:CN108325554B
公开(公告)日:2020-08-07
申请号:CN201810146356.4
申请日:2018-02-12
Applicant: 中国科学院过程工程研究所
IPC: B01J27/24 , B01J35/02 , C02F1/30 , C02F101/30 , C02F101/36 , C02F101/38
Abstract: 本发明提供了一种钒酸铋/石墨相氮化碳复合材料及其制备方法和用途,该复合材料包括钒酸铋纳米片和覆盖在其表面的石墨相氮化碳,钒酸铋和石墨相氮化碳的质量比为1:0.01‑0.30,石墨相氮化碳的厚度为3‑15nm;其制备方法:将表面活性剂与特定铋离子浓度的水溶液混合,得到溶液A;将酸处理后的石墨相氮化碳与特定钒离子浓度的水溶液混合,得到溶液B;将溶液A加入到溶液B中,并控制铋钒摩尔比,得到混合液;再进行水热反应,得到钒酸铋/石墨相氮化碳复合材料。该钒酸铋/石墨相氮化碳复合材料具有可见光响应性高、催化活性高以及循环稳定性好等优点,并且其制备方法简单、便于调控,可用于降解水中污染物。
-
公开(公告)号:CN110642270A
公开(公告)日:2020-01-03
申请号:CN201910936254.7
申请日:2019-09-29
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种工业废盐精制处理的方法,所述方法包括如下步骤:首先将工业废盐和洗盐剂混合并进行预处理,之后经固液分离,得到预处理盐和滤液;其次,将得到的预处理盐进行化盐,之后进行氧化处理,得到一次处理液;最后,将得到的一次处理液进行吸附作业及精滤作业,之后进行结晶,得到精制结晶盐。该方法实现了废盐中有机物和盐的有效分离,保证工业废盐中有机物的有效分离去除,吸附和精滤去除工业废盐中其他杂质,实现了高品质结晶盐的精制,同时该方法流程简单,具有能耗低、成本低、条件温和的优点,处理过程中不会产生工业三废,是一种环保的精制盐工艺。
-
公开(公告)号:CN110564960A
公开(公告)日:2019-12-13
申请号:CN201910810064.0
申请日:2019-08-29
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种石煤钒矿两段预处理酸浸提钒的方法,首先浸出液与石煤钒矿及添加剂混合进行一段预处理,以破坏石煤中含钒矿物的结构,然后对一段预处理石煤进行二段预处理,含钒矿物氧化分解,最后酸浸提钒得到酸浸液。本发明由于在一段预处理过程中采用浸出液处理石煤钒矿,减少了处理过程中的酸用量,同时经过两段预处理,石煤钒矿中钒的浸出率显著提高,进一步地,两段预处理可以使不同性质的石煤钒矿中的钒浸出,因此本发明具有钒浸出率高,酸消耗量低,工艺适应性好、连续性强等优点。
-
公开(公告)号:CN110527519A
公开(公告)日:2019-12-03
申请号:CN201910837375.6
申请日:2019-09-05
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种土壤修复剂及其在铬污染土壤修复后抑制“返黄”中的应用。所述土壤修复剂中添加了铁还原菌和硫酸盐还原菌,其既能与土壤中其他微生物共同作用,分解有机废弃物和有机调理剂中的有机质,产生大量水溶性有机物,还原六价铬和络合、螯合三价铬,还可以在铁还原菌和硫酸盐还原菌的协同作用下,同时解决铬污染土壤修复后“返黄”和硫酸盐盐渍化的长效安全风险问题。本发明属于土壤原位修复技术,在解决上述“返黄”和盐渍化问题的同时,再通过种植铬超积累植物进一步迁移转化,最终实现了铬污染土壤的绿色修复和生态构建。
-
公开(公告)号:CN109399718A
公开(公告)日:2019-03-01
申请号:CN201710712491.6
申请日:2017-08-18
Applicant: 中国科学院过程工程研究所 , 湖北振华化学股份有限公司
IPC: C01G37/14
Abstract: 本发明提供了一种含铬物料液相氧化提铬的方法,包括含铬物料液相氧化提铬的步骤,在所述含铬物料液相氧化提铬的步骤之前还对所述含铬物料进行预处理:将含铬物料与碱进行磨料处理。所述方法通过对含铬物料进行预处理,能够明显加快液相氧化提铬的反应速率,提高铬的转化率,降低反应温度,缩短反应时间,降低浸渣中铬含量,提高资源的利用率,降低生产成本。
-
-
-
-
-
-
-
-
-