一种研究制管变形对管线钢氢致开裂性能影响的方法

    公开(公告)号:CN103484642B

    公开(公告)日:2015-01-21

    申请号:CN201310410052.1

    申请日:2013-09-10

    Abstract: 一种研究制管变形对管线钢氢致开裂性能影响的方法,属于低碳微合金钢生产技术领域,特别适用于X52MS~X65MS抗硫化氢中厚板管线钢的生产。通过建立一种“拉伸+弯曲”成型方法模拟不同厚度和不同宽度规格钢板JCOE制管成型过程,根据管厂制管扩径率E%对钢板样坯预先进行一定应变率的拉伸变形来模拟制管扩径成型;再对预拉伸变形后的样坯进行弯曲变形来模拟制管弯曲成型;有助于研究制管前后钢板与钢管之间氢致开裂(HIC)性能之间的变化规律,有效提出确保不同厚径比X52MS~X65MS钢管HIC性能合格所对应的钢板HIC性能判定指标,为抗硫化氢管线钢的合同稳定生产与质量风险控制提供良好的保障。

    一种研究制管变形对管线钢氢致开裂性能影响的方法

    公开(公告)号:CN103484642A

    公开(公告)日:2014-01-01

    申请号:CN201310410052.1

    申请日:2013-09-10

    Abstract: 一种研究制管变形对管线钢氢致开裂性能影响的方法,属于低碳微合金钢生产技术领域,特别适用于X52MS~X65MS抗硫化氢中厚板管线钢的生产。通过建立一种“拉伸+弯曲”成型方法模拟不同厚度和不同宽度规格钢板JCOE制管成型过程,根据管厂制管扩径率E%对钢板样坯预先进行一定应变率的拉伸变形来模拟制管扩径成型;再对预拉伸变形后的样坯进行弯曲变形来模拟制管弯曲成型;有助于研究制管前后钢板与钢管之间氢致开裂(HIC)性能之间的变化规律,有效提出确保不同厚径比X52MS~X65MS钢管HIC性能合格所对应的钢板HIC性能判定指标,为抗硫化氢管线钢的合同稳定生产与质量风险控制提供良好的保障。

    韧性优良的X70热轧钢板及其生产方法

    公开(公告)号:CN101525722B

    公开(公告)日:2011-04-20

    申请号:CN200910082515.X

    申请日:2009-04-22

    Abstract: 一种韧性优良的X70热轧钢板及其生产方法,其特征在于,板坯成分为C:0.03~0.09%,Si:0.01~0.40%,Mn:1.40~1.85%,P:≤0.013%,S:≤0.004%,Alt:0.01~0.06%,N:≤0.008%,H:≤0.0003%,而且Nb、V、Ti微合金元素复合添加;还可含有Mo:0.00~0.20%、Cu:0.00~0.30%、Ni:0.00~0.30%、Cr:0.00~0.30%中1~4种,其余为Fe和不可避免杂质元素。板坯加热温度为1150~1220℃;在奥氏体再结晶区完成第一阶段控制轧制,单道次压下率在15~30%,其终止温度为960~1050℃;在奥氏体未再结晶区完成第二阶段的控制轧制,其终止轧制温度为780~840℃;然后以10~30℃/s的速度冷却,终止冷却温度为450~600℃。优点在于,该钢板具有优良的韧性性能。

    一种薄规格高韧性X80热轧钢板及其生产方法

    公开(公告)号:CN103397260B

    公开(公告)日:2015-08-26

    申请号:CN201310325515.4

    申请日:2013-07-30

    Abstract: 一种薄规格高韧性X80热轧钢板及其生产方法,属于低碳微合金钢技术领域。该钢板化学成分的重量百分配比为:C:0.05~0.09%,Si:0.15~0.40%,Mn:1.60~1.90%,P:≤0.015%,S:≤0.005%,Alt:0.01~0.06%,Nb:0.025~0.055%,V:0.02~0.05%,Ti:0.005~0.025%,N:≤0.008%,H:≤0.0002%,Cr:0.21~0.40%,Ni:0.00~0.50%,Cu:0.00~0.30%,余量为Fe和不可避免杂质元素,均为重量百分数。相应的生产方法,其特征在于:该方法用厚度250~300mm的连铸坯生产厚度8~10mm、宽度2~3m的X80管线钢中厚板。优点在于,有效地解决了薄规格、宽钢板X80的强韧性控制难题,弥补热连轧机组的宽度不足,对我国的地方管网建设具有重大意义。

    一种薄规格高强韧管线钢板及其生产方法

    公开(公告)号:CN103725960A

    公开(公告)日:2014-04-16

    申请号:CN201310741800.4

    申请日:2013-12-28

    Abstract: 一种薄规格高强韧管线钢板及其生产方法,属于低碳微合金钢生产技术领域。该钢板化学成分的重量百分配比为:C:0.05~0.10%,Si:0.10~0.45%,Mn:1.35~1.85%,P:≤0.020%,S:≤0.005%,Alt:0.01~0.05%,Nb:0.03~0.06%,V:0.03~0.06%,Ti:0.01~0.02%,Mo:0.00~0.20%,余量为Fe和不可避免杂质元素。其相应生产方法的主要特征为采用低温控轧替代加速冷却工艺:第二阶段开轧温度控制在800-850℃,终轧温度控制在660-720℃,轧后采用空气中自然冷却的方式到室温。优点在于,所述的薄规格高强韧管线钢板在合理的成分设计下,采用低温控轧工艺替代加速冷却工艺,获得了良好的强韧性和良好的板形,解决了薄规格管线钢中厚板的性能和板形控制难题。

    一种提高大壁厚管线钢边部和心部组织均匀性的方法

    公开(公告)号:CN102416406B

    公开(公告)日:2014-04-02

    申请号:CN201110282115.0

    申请日:2011-09-21

    Abstract: 一种提高大壁厚管线钢边部和心部组织均匀性的方法,属于微合金高强度管线钢生产技术领域。工艺为:连铸工序采用厚板坯连铸,连铸坯厚度300~400mm,连铸坯拉速为0.60~0.80m/min,中间包过热度为10~25℃。连铸坯厚度/成品钢板厚度为10.0~13.5,成品钢板宽度/连铸坯宽度为1.0~1.55。热轧工序采用两阶段轧制,粗轧展宽阶段总压下率为0~36%,粗轧展宽后纵轧总压下率为50~75%,粗轧纵轧阶段压下率逐道次增加,粗轧最后一道次压下率为20~30%;精轧阶段总压下率为65~75%,精轧阶段压下率逐道次减少,精轧最后一道次压下率为10~15%。提高了30~40mm壁厚管线钢边部和心部组织均匀性。

    抗氢致裂纹BNS钢板及其生产方法

    公开(公告)号:CN102839326A

    公开(公告)日:2012-12-26

    申请号:CN201210331664.7

    申请日:2012-09-07

    Abstract: 一种抗氢致裂纹BNS钢板及其生产方法,属于低碳结构钢技术领域。钢板成分为:C:0.03~0.07%,Si:0.01~0.40%,Mn:1.00~1.50%,P:≤0.015%,S:≤0.003%,Alt:0.01~0.06%,N:≤0.006%,H:≤0.0002%,添加V、Ti微合金强化元素,V+Ti≤0.10%,还含有Cu:0.00~0.30%、Ni:0.00~0.20%、Cr:0.00~0.30%中的1~3种。其余为Fe和不可避免杂质元素。金相组织由细晶铁素体组织组成。生产工艺为:将浇铸成250~350mm厚板坯装入加热炉加热出炉进行轧制;粗轧开轧温度1060~1160℃,单道次压下率15~30%;精轧开轧温度850~950℃;终轧温度780~860℃;入水温度740~820℃;正火温度900℃~950℃。该钢板在满足力学性能的基础上拥有优良的抗氢致裂纹性能。

    一种提高大壁厚管线钢边部和心部组织均匀性的方法

    公开(公告)号:CN102416406A

    公开(公告)日:2012-04-18

    申请号:CN201110282115.0

    申请日:2011-09-21

    Abstract: 一种提高大壁厚管线钢边部和心部组织均匀性的方法,属于微合金高强度管线钢生产技术领域。工艺为:连铸工序采用厚板坯连铸,连铸坯厚度300~400mm,连铸坯拉速为0.60~0.80m/min,中间包过热度为10~25℃。连铸坯厚度/成品钢板厚度为10.0~13.5,成品钢板宽度/连铸坯宽度为1.0~1.55。热轧工序采用两阶段轧制,粗轧展宽阶段总压下率为0~36%,粗轧展宽后纵轧总压下率为50~75%,粗轧纵轧阶段压下率逐道次增加,粗轧最后一道次压下率为20~30%;精轧阶段总压下率为65~75%,精轧阶段压下率逐道次减少,精轧最后一道次压下率为10~15%。提高了30~40mm壁厚管线钢边部和心部组织均匀性。

    一种正火轧制生产韧性优良管线钢中厚板的方法

    公开(公告)号:CN101921955A

    公开(公告)日:2010-12-22

    申请号:CN201010235925.6

    申请日:2010-07-22

    Abstract: 本发明涉及一种管线钢及其制造方法,特别是涉及一种正火轧制生产韧性优良管线钢中厚板的方法。其生产工艺为:将钢坯进行低温加热,加热温度为1120-1220℃,加热时间3-6小时。钢坯出炉后进行热轧,分两阶段进行轧制,中间进行待温,第一阶段纵轧过程保证单道次压下率大于15%,中间坯待温厚度≤成品厚度的2倍,第二阶段终止轧制温度为Ac3+(30~80)℃。轧后采用空气中自然冷却的方式到室温。优点在于,生产工艺简约,且钢板具有优良的低温韧性,-60℃V型缺口夏比冲击功稳定达到300J以上,-60℃落锤性能稳定达到85%以上。

Patent Agency Ranking