-
公开(公告)号:CN110061975A
公开(公告)日:2019-07-26
申请号:CN201910249260.5
申请日:2019-03-29
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L29/06
Abstract: 本发明涉及一种基于离线流量包解析的仿冒网站识别方法,包括:根据已知网站信息库训练随机森林分类器,以构建对仿冒网站的判别模型;获取待检测网站的数据流并保存为离线流量包,通过该离线流量包得到该待检测网站的网站信息;根据该已知网站信息库对该网站信息进行规则匹配,对匹配为仿冒网站的待检测网站进行标识,将匹配失败的网站信息通过该判别模型进行判别,并对判别为仿冒网站的待检测网站进行标识。
-
公开(公告)号:CN107194310A
公开(公告)日:2017-09-22
申请号:CN201710213110.X
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06K9/00718 , G06K9/6202 , G06K9/6268
Abstract: 本发明涉及一种基于场景变化分类和在线局部特征匹配的刚体目标跟踪方法,其步骤包括:在初始图像中选定感兴趣的目标区域,在目标区域检测SURF特征;对每个SURF特征建立场景描述向量,通过随机的场景变化实现离线学习,得到每个SURF特征最能够适应的场景分类信息;为每个SURF特征创建分类器;在当前图像到来时,判断当前图像的场景分类,从初始图像中选取最能够适应当前场景的SURF特征,并将其与当前图像检测到的SURF特征进行基于分类器的匹配,形成匹配点对;根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明使跟踪能够保持对视频中感兴趣区域出现连续复杂变化的自适应性。
-
公开(公告)号:CN117271765A
公开(公告)日:2023-12-22
申请号:CN202311059507.X
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/30 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。
-
公开(公告)号:CN106778831B
公开(公告)日:2020-04-24
申请号:CN201611064798.1
申请日:2016-11-28
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于高斯混合模型的刚体目标在线特征分类与跟踪方法。该方法包括以下步骤:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为每个SURF特征创建分类器;3)在新图像到来时,利用分类器对初始图像中的SURF特征与新图像检测到的SURF特征进行匹配,形成匹配点对;在分类器的匹配过程中,采用基于高斯混合模型的在线分类机制判别正样本和负样本;4)根据匹配点对,采用随机采样一致性算法计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够应对视频中复杂的场景变化,保证跟踪的自适应能力,实现稳定连续、现实可用的目标跟踪。
-
公开(公告)号:CN106095928B
公开(公告)日:2019-10-29
申请号:CN201610409465.1
申请日:2016-06-12
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种事件类型识别方法及装置。该方法包括以下步骤:对训练集中所有文本进行分词、提取词性处理后训练词向量空间模型,提取文本的特征,将文本表示为特征向量;对于训练集进行事件类型聚类,训练带有类型聚类正则化项的神经网络模型;对于测试样本同样进行分析、提取词性处理,并利用已经训练好的词向量模型,得到特征表示;利用类型聚类正则化项的神经网络模型进行事件类别识别。借助于本发明的技术方案,能够利用同一群组中的类型共享信息来减轻标注数据不平衡带来的问题。
-
公开(公告)号:CN110134947A
公开(公告)日:2019-08-16
申请号:CN201910307654.1
申请日:2019-04-17
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于不平衡多源数据的情感分类方法,包括:获取来自多个数据源的训练数据,其中训练数据包含多条文本数据,每条文本数据具有情感类型标签和其对应的数据源;按数据源对训练数据进行分类,以集合每个数据源对应的文本数据作为第一数据集,根据每个第一数据集中各情感类型标签的数量,统计每个第一数据集中情感类型的标准差,选择标准差最小的第一数据作为预训练集,其余第一数据集作为后续训练集;以预训练集训练神经网络模型的权值直到损失函数收敛,输出神经网络模型作为预分类模型,以后续训练集继续训练预分类模型直到损失函数收敛,输出预分类模型作为最终分类模型;将待情感分类文本数据输入最终分类模型,得到其情感类型。
-
公开(公告)号:CN107491689A
公开(公告)日:2017-12-19
申请号:CN201710560788.5
申请日:2017-07-11
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种密码破解方法和装置,方法包括:CPU按照预设分析规则将待破解密码拆分为由掩码和子字符串组成的形式,并为掩码和子字符串分别生成对应的密码口令空间,将子字符串的密码口令空间划分给一个或多个GPU;一个或多个GPU均根据被划分到的子字符串生成一个密码口令子空间,均根据各自生成的密码口令子空间与掩码进行排列组合,生成完整密码口令空间,并使用完整密码口令空间对待破解密码进行破解。本发明的密码破解方法可以明显减少待破解密码产生的排列组合的数量,并由CPU和GPU协同计算,对密码排列组合产生的空间进行划分,提高了密码破解的效率,解决了现有技术的问题。
-
公开(公告)号:CN107340954A
公开(公告)日:2017-11-10
申请号:CN201710532768.7
申请日:2017-07-03
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F3/0484 , G06K9/20
CPC classification number: G06F3/0484 , G06K9/2054 , G06K2209/01
Abstract: 本发明公开了一种信息提取方法和装置,该方法包括:按照预定遍历算法获取预定应用软件APP自动运行过程中所有界面的屏幕快照,并按照预设命名规则为得到的每个屏幕快照确定名称;对获取到的所有屏幕快照进行文字识别,以得到每个屏幕快照对应的文字内容;按照每个屏幕快照的名称将各个屏幕快照对应的文字内容进行拼接,并将拼接后的文档进行保存,以还原预定APP的完整文字内容。本发明的信息提取方法自动获得准确的文字内容,并且适用于多种操作系统的多种APP,解决了现有技术的如下问题:现有信息提取方法无法实现针对多种不同操作系统、不同应用程序的信息提取,而且提取的信息在可读性方面也具有较大的不确定性。
-
公开(公告)号:CN106570414A
公开(公告)日:2017-04-19
申请号:CN201610952673.6
申请日:2016-11-02
Applicant: 国家计算机网络与信息安全管理中心 , 恒安嘉新(北京)科技有限公司
IPC: G06F21/62
CPC classification number: G06F21/6281 , G06F21/629
Abstract: 本发明公开了一种自动化获取iOS APP加密通讯数据的方法和系统,属于移动应用技术领域,该方法包括:步骤1、逆向分析所述APP,得到所述APP的数据加密函数入口地址;步骤2、启动所述APP,注入所述APP的进程ID;步骤3、在所述数据加密函数入口地址下断点,读取明文数据并显示。本发明的技术方案通过获取iOS APP的数据加密函数入口地址,在数据被加密之前,可以从内存中读取明文数据,实现对网络通信数据的监控,并且对iOS APP的监控也不限于新闻类、微博类的通讯数据。
-
公开(公告)号:CN117633560B
公开(公告)日:2024-04-09
申请号:CN202410102692.4
申请日:2024-01-25
Applicant: 东南大学 , 国家计算机网络与信息安全管理中心江苏分中心
Abstract: 本发明属于网络空间安全以及数据安全技术领域,涉及一种基于引力模型的网络异常数据传输行为聚类识别方法,包括步骤1,获取网络传输行为特征向量样本集,进行行为类别标注;步骤2,计算未标注行为类别的网络传输行为特征向量与每个行为类别的特征向量集合之间的引力,获得最大引力值;步骤3,若最大引力值超过引力捕获阈值,将未标注行为类别的网络传输行为特征向量标注为对应的行为类别,加入至对应的行为类别特征向量集合;步骤4,执行步骤2至步骤3对其他未标注行为类别的网络传输行为特征向量进行行为类别标注。该方法可以在网络流量被加密的情况下,判断网络传输行为是否存在异常,从而完成对加密流量的恶意行为识别和发现。
-
-
-
-
-
-
-
-
-