-
公开(公告)号:CN117873931A
公开(公告)日:2024-04-12
申请号:CN202410270572.5
申请日:2024-03-11
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06F13/16
Abstract: 本申请公开了计算机技术领域内的一种数据处理系统、方法及介质。在本申请中,数据处理系统包括多个内存器件和至少一个主机;主机接收到访问请求后,若确定自身缓存组件中未存储访问请求要访问的目标数据,则当前主机将访问请求传输至多个内存器件,以使多个内存器件响应访问请求,并利用缓存预取决策器确定预缓存数据,将预缓存数据传输至当前主机中的缓存组件进行存储,由此将缓存预取决策器由主机端转移至内存端,降低主机负载,提高主机处理访问请求的效率;并且,内存端可以将预缓存数据直接传输至当前主机中的缓存组件进行存储,而无需主机向内存端请求预缓存数据,可以提高预缓存效率。
-
公开(公告)号:CN117811846A
公开(公告)日:2024-04-02
申请号:CN202410230120.4
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
IPC: H04L9/40 , H04L67/10 , H04L41/142 , G06N3/045 , G06N3/098
Abstract: 本发明公开了一种基于分布式系统的网络安全检测方法、系统、设备及介质,涉及网络安全领域,为解决边缘计算设备采用固定大小的本地网络安全检测模型无法发挥最优性能的问题,该方法包括基于本地安全数据训练初始网络安全检测模型;将测试安全数据集输入初始网络安全检测模型后,根据两个输出网络块对应的输出值调整初始网络安全检测模型的神经网络深度得到本地网络安全检测模型;当满足参数更新条件时,利用本地网络安全检测模型的模型参数和关联计算设备的模型参数更新本地网络安全检测模型;通过更新后的本地网络安全检测模型进行本地网络安全检测。本发明能够使边缘计算设备发挥最优的本地网络安全检测性能,减少了通信开销和带宽需求。
-
公开(公告)号:CN117806835A
公开(公告)日:2024-04-02
申请号:CN202410224929.6
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06F9/50 , G06F9/48 , G06N3/0464 , G06N3/084
Abstract: 本申请公开了一种任务分配方法、装置及电子设备和存储介质,涉及计算机技术领域,该方法包括:获取分布式训练的物理节点集合、数据源集合、神经网络模型、事件树集合;确定多个事件树的总能耗,选择总能耗最小的事件树作为目标事件树;以最小化训练能耗为目标确定目标事件树的目标事件或数据源分配策略;其中,目标事件或数据源分配策略用于描述处理目标事件树中事件的物理节点或数据源分配的物理节点,训练能耗包括物理节点处理事件的能耗、不同事件之间的数据传输能耗;基于目标事件或数据源分配策略将数据源和目标事件树中的事件部署于对应的物理节点。本申请降低了分布式训练神经网络模型的能耗。
-
公开(公告)号:CN117765450A
公开(公告)日:2024-03-26
申请号:CN202410186667.9
申请日:2024-02-20
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明涉及计算机视觉技术领域,具体公开了一种视频语言理解方法、装置、设备及可读存储介质,除视频样本自带的注释文本外,还通过获取如搜索关键词或视频分段信息等视频样本的关联信息,以利用注释文本和关联信息来构建视频样本对应的文本样本,从而弥补视觉模态与文本模态弱相关的问题,在进行视频语言模型的训练时可以为模型提供更为丰富的上下文信息以帮助模型更好地理解视频内容;在视频语言模型的训练中基于该文本样本与视频样本进行视觉文本跨模态编码,解决了传统视频语言模型泛化能力差的问题,提升了计算机视觉的视频理解能力,进而可以精确响应视频语言相关问题。
-
公开(公告)号:CN117746441A
公开(公告)日:2024-03-22
申请号:CN202410186665.X
申请日:2024-02-20
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明涉及计算机视觉领域,具体公开了一种视觉语言理解方法、装置、设备及可读存储介质,通过在训练视觉理解模型时根据样本数据集通过视觉模态和文本模态之间的互信息构建视觉文本跨模态共识信息,以进行基于视觉文本跨模态共识信息的视觉文本跨模态编码,以视觉文本跨模态共识信息为桥梁将视觉语言中蕴含的知识学习到模型中,使模型更好地理解图像或视频的内容和上下文信息,引导模型聚焦图像或视频与其对应的语言信息中的重要部分,解决了传统视觉语言模型或视频语言模型均存在的由视觉模态和文本模态语义不对齐导致的学习损失较大的问题,提升了计算机视觉的视频语言理解能力,进而精确响应视觉语言相关问题。
-
公开(公告)号:CN117474903B
公开(公告)日:2024-03-22
申请号:CN202311800569.1
申请日:2023-12-26
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06T7/00 , G06T7/90 , G06V10/74 , G06V10/764 , G06V10/774
Abstract: 本发明涉及人工智能技术领域,具体公开了一种图像侵权检测方法、装置、设备及可读存储介质,通过对第一样本图像数据集中的部分第一样本图像进行颜色扭曲处理后训练二分类探针检测模型,并对未授权图像进行颜色扭曲处理后以处理后的未授权图像替换未授权图像进行发布,从而对于文生图模型训练任务对应的文生图训练图像数据集,可以利用二分类探针检测模型识别得到文生图训练图像数据集中的探针检测结果以检测样本侵权事件。颜色扭曲相较于直接添加水印来说不易被人眼识别也难以被常用的预处理增强干扰,从而有效避免未授权图像被抹掉水印的情况,而能够被训练的二分类探针检测模型检出,从而实现对文生图模型训练时采用的图像是否侵权进行检出。
-
公开(公告)号:CN117155791B
公开(公告)日:2024-02-13
申请号:CN202311423735.0
申请日:2023-10-31
Applicant: 浪潮电子信息产业股份有限公司
IPC: H04L41/0894 , H04L41/14 , H04L41/12 , H04L41/0803 , H04L67/10
Abstract: 本发明公开了一种基于集群拓扑结构的模型部署方法、系统、设备及介质,涉及服务器集群领域,为解决跨中央处理器通信影响通信效率的问题,该方法包括基于服务器集群的配置信息生成拓扑结构树;按拓扑结构树确定各个中央处理器节点对应的算力,基于算力获取最优划分部署方案;按最优划分部署方案对预设模型按其网络层进行划分得到多个模型模块,将各个模型模块部署在各个中央处理器节点下的各个设备节点上,以使服务器集群的各个设备节点之间的通信开销最小。本发明能够使得跨中央处理器节点通信的数据量最小,以提升服务器集群中各个带宽
-
公开(公告)号:CN116956756B
公开(公告)日:2024-02-09
申请号:CN202311220752.4
申请日:2023-09-21
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明涉及深度学习技术领域,并公开了模型部署方法、任务处理方法、装置、设备及存储介质,通过仿真模拟,计算出每一个分组划分策略下的每个组内并行策略的延迟,基于该延迟则可选出最优设备组划分策略和多个最优组内并行策略,并按照选出的策略进行部署,并记录下模型与设备的映射关系,则可满足延迟要求。又由于模型的部署不是一个模型对应一个设备,而是一个模型并行部署于多个设备之上,且一个设备又对应部署了多个模型。因而,在处理任务时,可以实现同一个模型的任务在多个设备上流水并行处理,不同模型的任务在多个设备上并行处理。即,可以在少量设备上满足延迟要求、提升处(56)对比文件向建军,左继章,白欣.基于多任务并行处理的实时集群计算机系统.系统工程与电子技术.2003,(09),全文.
-
公开(公告)号:CN116843030B
公开(公告)日:2024-01-19
申请号:CN202311118770.1
申请日:2023-09-01
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06N5/04 , G06N3/045 , G06N3/0464 , G06N3/08 , G06T11/60 , G06F40/126 , G06F40/205 , G06F40/30 , G06F40/58
Abstract: 像模态直观且具体地描述因果推理结果。本发明公开了一种基于预训练语言模型的因果图像生成方法、装置及设备,涉及生成式人工智能技术领域,以解决因果图像难以生成的问题,该方法包括:获取待预测图像和问题文本;根据待预测图像和问题文本,利用预训练语言模型编码器,得到图文推理特征;根据待预测图像和图文推理特征,利用图像生成器,生成因果推理图像;本发明通过根据待预测图像和问题文本,利用预训练语言模型编码器,得到图文推理特征,利用预训练语言模型的因果推理能力,生成(56)对比文件莫建文;徐凯亮.结合皮尔逊重构的文本到图像生成模型.桂林电子科技大学学报.2020,(第01期),全文.
-
公开(公告)号:CN117315158A
公开(公告)日:2023-12-29
申请号:CN202311413665.0
申请日:2023-10-30
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06T17/00 , G06T15/20 , G06F16/332 , G06N3/04
Abstract: 本发明公开了一种数据集生成方法、三维内容生成方法、装置、设备及介质,应用于人工智能技术领域。其中,方法包括利用预先基于预训练语言模型微调后的文本问答模型获取三维内容数据集所包含的部件名称信息,获取该数据集中各三维内容在多视角下的二维内容图像。根据部件名称信息和各二维内容图像,基于像素、部件名称、每个三维点之间的对应关系,确定各部件名称对应的所有三维点;根据三维内容数据集中每个三维内容的部件名称及相对应的三维点,得到文本与三维内容部件对应数据集。本发明可以解决相关技术生成的文本与三维内容部件对应数据集的精度和规模均不满足用户需求的问题,能够生成大规模高质量的文本与三维内容部件对应数据集。
-
-
-
-
-
-
-
-
-