-
公开(公告)号:CN110674673A
公开(公告)日:2020-01-10
申请号:CN201910697979.5
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种视频关键帧抽取方法、装置和存储介质,用以减少视频处理过程中的冗余信息,提高视频处理速度。所述视频关键帧抽取方法,包括:从待分析视频中提取I帧;针对提取的每一I帧,利用深度哈希网络确定其对应的深度哈希码,所述深度哈希网络为利用预先生成的图像样本对进行训练得到的;根据各I帧对应的深度哈希码,分别确定两两I帧深度哈希码之间的汉明距离;根据两两I帧深度哈希码之间的汉明距离,对提取的I帧进行聚类;针对每一聚类,分别确定该聚类中包含的每一I帧的信息熵;从每一聚类中,提取信息熵最大的I帧组成所述待分析视频的关键帧。
-
公开(公告)号:CN110610230A
公开(公告)日:2019-12-24
申请号:CN201910698120.6
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种台标检测方法、装置及可读存储介质,该方法包括如下步骤:获取台标数据集,并对所述台标数据集进行分组获得台标训练集;构建多损失融合的孪生神经网络,并基于所述台标训练集对所构建的多损失融合的孪生神经网络进行训练获得训练后的多损失融合的孪生神经网络;通过所述训练后的多损失融合的孪生神经网络对待测台标进行检测。本发明方法通过构建孪生神经网络框架,很好地消除了样本数量不足对训练网络带来的影响,可以更好地检测未知的新的种类的敏感台标。
-
公开(公告)号:CN116824710B
公开(公告)日:2025-04-29
申请号:CN202310587326.8
申请日:2023-05-23
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V40/40 , G06V40/16 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种伪造人脸鉴别方法、装置、设备和存储介质,将待鉴别图像输入人脸鉴别模型;获取人脸鉴别模型输出的待鉴别图像对应的鉴别结果;其中,人脸鉴别模型用于获取待鉴别图像的面部单元一致性特征,并基于待鉴别图像的面部单元一致性特征确定待鉴别图像对应的鉴别结果;待鉴别图像的面部单元一致性特征用于表征待鉴别图像的各面部单元相关区域之间的相关性;人脸鉴别模型是基于样本图像和样本图像对应的鉴别标签训练得到的,提升了对于未知造假方法合成的图像的鉴别效果。
-
公开(公告)号:CN116778376A
公开(公告)日:2023-09-19
申请号:CN202310530291.4
申请日:2023-05-11
Applicant: 中国科学院自动化研究所
IPC: G06V20/40 , G06V10/764 , G06V10/774 , G06V10/42 , G06V10/80
Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。
-
公开(公告)号:CN116778376B
公开(公告)日:2024-03-22
申请号:CN202310530291.4
申请日:2023-05-11
Applicant: 中国科学院自动化研究所
IPC: G06V20/40 , G06V10/764 , G06V10/774 , G06V10/42 , G06V10/80
Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。
-
公开(公告)号:CN111612143B
公开(公告)日:2023-12-19
申请号:CN202010440475.8
申请日:2020-05-22
Applicant: 中国科学院自动化研究所
IPC: G06N3/082 , G06N3/084 , G06N3/0495 , G06N3/0464
Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。
-
公开(公告)号:CN119941551A
公开(公告)日:2025-05-06
申请号:CN202411972412.1
申请日:2024-12-30
Applicant: 支付宝(杭州)信息技术有限公司 , 中国科学院自动化研究所
Abstract: 本说明书实施例提供一种图像生成方法、装置、设备与存储介质,该方法包括:通过在图像去噪过程中将时间步分为完整推理步和缓存修剪步,在缓存修剪步,修剪一部分图像单元,采用缓存图像特征进行替代,减少了对图像单元的推理次数,解决了图像生成模型推理过程中由于图像单元数量多并且需要进行多次推理导致的冗余计算问题,从而提高了图像生成模型的推理速度,同时结合完整推理步减少由于缓存引入的误差,平衡加速效果和生成质量。
-
公开(公告)号:CN118643865A
公开(公告)日:2024-09-13
申请号:CN202410542618.4
申请日:2024-04-30
Applicant: 中国科学院自动化研究所
Abstract: 本申请实施例提供一种基于不确定性定向极化和自适应插件的反蒸馏方法及装置,所述方法包括:获取用作教师网络的预训练母模型,所述预训练母模型是基于蒸馏损失和竞争损失训练得到的;基于所述预训练母模型、反蒸馏模型和反蒸馏插件获取目标模型,所述目标模型是基于反蒸馏损失和不确定性定向极化损失训练得到的,所述不确定性定向极化损失用于使所述目标模型对于样本扰动的极化方向保持不变。本申请实施例提供的基于不确定性定向极化和自适应插件的反蒸馏方法及装置,通过先训练一个没有反蒸馏能力的普通母模型作为教师模型,然后利用反蒸馏插件结合不确定性定向极化损失对模型进行优化,从而在保证模型性能的前提下,提高防御蒸馏攻击的效率。
-
公开(公告)号:CN114666571B
公开(公告)日:2024-06-14
申请号:CN202210214422.3
申请日:2022-03-07
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本发明提供一种视频敏感内容检测方法及系统,该方法包括:对待检测视频执行解码方法的部分步骤,提取所述待检测视频的压缩域信息;根据所述压缩域信息判断所述待检测视频的质量是否合格;在所述待检测视频的质量不合格的情况下,确定所述待检测视频中不存在敏感内容;在所述待检测视频的质量合格的情况下,根据所述压缩域信息对所述待检测视频进行敏感内容检测,确定所述待检测视频中是否存在敏感内容。本发明降低了敏感内容检测的资源消耗,提高检测效率和检测准确率。
-
公开(公告)号:CN116824710A
公开(公告)日:2023-09-29
申请号:CN202310587326.8
申请日:2023-05-23
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V40/40 , G06V40/16 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种伪造人脸鉴别方法、装置、设备和存储介质,将待鉴别图像输入人脸鉴别模型;获取人脸鉴别模型输出的待鉴别图像对应的鉴别结果;其中,人脸鉴别模型用于获取待鉴别图像的面部单元一致性特征,并基于待鉴别图像的面部单元一致性特征确定待鉴别图像对应的鉴别结果;待鉴别图像的面部单元一致性特征用于表征待鉴别图像的各面部单元相关区域之间的相关性;人脸鉴别模型是基于样本图像和样本图像对应的鉴别标签训练得到的,提升了对于未知造假方法合成的图像的鉴别效果。
-
-
-
-
-
-
-
-
-