内容安全检测模型训练方法、检测方法和装置

    公开(公告)号:CN116778376A

    公开(公告)日:2023-09-19

    申请号:CN202310530291.4

    申请日:2023-05-11

    Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。

    内容安全检测模型训练方法、检测方法和装置

    公开(公告)号:CN116778376B

    公开(公告)日:2024-03-22

    申请号:CN202310530291.4

    申请日:2023-05-11

    Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。

    深度卷积神经网络的压缩方法及系统

    公开(公告)号:CN111612143B

    公开(公告)日:2023-12-19

    申请号:CN202010440475.8

    申请日:2020-05-22

    Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。

    基于不确定性定向极化和自适应插件的反蒸馏方法及装置

    公开(公告)号:CN118643865A

    公开(公告)日:2024-09-13

    申请号:CN202410542618.4

    申请日:2024-04-30

    Abstract: 本申请实施例提供一种基于不确定性定向极化和自适应插件的反蒸馏方法及装置,所述方法包括:获取用作教师网络的预训练母模型,所述预训练母模型是基于蒸馏损失和竞争损失训练得到的;基于所述预训练母模型、反蒸馏模型和反蒸馏插件获取目标模型,所述目标模型是基于反蒸馏损失和不确定性定向极化损失训练得到的,所述不确定性定向极化损失用于使所述目标模型对于样本扰动的极化方向保持不变。本申请实施例提供的基于不确定性定向极化和自适应插件的反蒸馏方法及装置,通过先训练一个没有反蒸馏能力的普通母模型作为教师模型,然后利用反蒸馏插件结合不确定性定向极化损失对模型进行优化,从而在保证模型性能的前提下,提高防御蒸馏攻击的效率。

Patent Agency Ranking