一种针对千万级规模新闻评论的观点挖掘方法

    公开(公告)号:CN104778209B

    公开(公告)日:2018-04-27

    申请号:CN201510111752.X

    申请日:2015-03-13

    Abstract: 本发明公开了一种针对千万级规模新闻评论的观点挖掘方法。具体步骤如下:1)、统计千万级规模新闻评论的数量;2)、判断该数量是否大于或等于阈值K,如果是不予处理,否则进入步骤三;3)、利用中文分词工具,对数量小于阈值K的新闻标题和评论进行分词,进行词性标注;4)、根据分词结果对新闻评论聚类,得到类别标签;5)、对新闻评论进行关键词对提取;6)、统计新闻评论的比例和混杂度;7)、根据关键词对筛选并提取代表性文本。本发明利用中文分词工具,考虑汉语语言的用法和搭配关系,结合新闻标题的作用,处理千万级规模的新闻评论,具有高效性、鲁棒性和易用性等优点。

    一种基于链接网络的用户领域识别方法及其装置

    公开(公告)号:CN103761246B

    公开(公告)日:2017-02-08

    申请号:CN201310705515.7

    申请日:2013-12-19

    Abstract: 本发明提出一种基于链接网络的用户领域识别方法及其装置,属于数据发掘及复杂网络领域。装置包括数据收集与预处理模块,领域原型用户集合构建模块和用户领域计算模块。方法包括:步骤1,手工采集初始种子用户;步骤2,收集种子用户的关注用户;步骤3,构建链接网络,计算各关注用户对于各领域的隶属度;步骤4,按隶属度大小将用户排序;步骤5,为各领域构建领域原型用户集合;步骤6,收集待分类用户的关注用户;步骤7,计算待分类用户对于各领域的隶属度;步骤8,将领域隶属度大小排序;步骤9,加领域标签。本发明适用于多种社交网络平台,能够克服短文本的缺点,特别适合用户建模,个性化信息搜索和推荐等领域。

    一种面向网络数据的专题文档快速识别系统

    公开(公告)号:CN105843854A

    公开(公告)日:2016-08-10

    申请号:CN201610150817.6

    申请日:2016-03-16

    Abstract: 本发明提供一种面向网络数据的专题文档快速识别系统,通过与不同规则的高效匹配达到快速识别专题的目的。本发明主要由文档获取模块、文档结果存储模块、轮询监测模块、实时服务接口、历史服务接口、规则树构建模块、实时过滤处理模块和回溯过滤处理模块组成。本发明实现了对实时数据和历史有效数据同时进行处理的功能,能够对大量文档数据进行批量处理,能够在保证系统正常运行的前提下对处理算法进行动态热切换,能够在输入输出接口内容变动后依然可以保证系统的正常运行,弥补了目前一些文档识别系统无法随意更改、灵活性和复用性差等的缺陷,对需求变更有很强的适应性。

    一种基于链接网络的用户领域识别方法及其装置

    公开(公告)号:CN103761246A

    公开(公告)日:2014-04-30

    申请号:CN201310705515.7

    申请日:2013-12-19

    CPC classification number: G06F17/3089 G06F17/30705

    Abstract: 本发明提出一种基于链接网络的用户领域识别方法及其装置,属于数据发掘及复杂网络领域。装置包括数据收集与预处理模块,领域原型用户集合构建模块和用户领域计算模块。方法包括:步骤1,手工采集初始种子用户;步骤2,收集种子用户的关注用户;步骤3,构建链接网络,计算各关注用户对于各领域的隶属度;步骤4,按隶属度大小将用户排序;步骤5,为各领域构建领域原型用户集合;步骤6,收集待分类用户的关注用户;步骤7,计算待分类用户对于各领域的隶属度;步骤8,将领域隶属度大小排序;步骤9,加领域标签。本发明适用于多种社交网络平台,能够克服短文本的缺点,特别适合用户建模,个性化信息搜索和推荐等领域。

    一种利用表情符号对微博进行情感倾向分类的方法

    公开(公告)号:CN103761239A

    公开(公告)日:2014-04-30

    申请号:CN201310664725.6

    申请日:2013-12-09

    CPC classification number: G06F17/3089 G06F17/3071

    Abstract: 本发明公开了一种根据表情符号对微博进行情感倾向分类的方法,包括:创建中性情感集、消极情感集和积极情感集;利用中性情感集、消极情感集和积极情感集,建立中性情感贝叶斯分类器;利用由消极情感集和积极情感集,建立极性情贝叶斯情感分类器;利用中性情感贝叶斯分类器和极性情感贝叶斯分类器对待测微博进行情感分类。本发明通过建立一个两阶段分类,即建立中性情感分类器,把中性情感的微博剔除,建立极性情感分类器,将有极性情感的微博分为积极情感和消极情感,该分类器分类速度快、占用空间小且鲁棒,且本发明能通过微博准确的了解到人们对当前的热门话题或事件的态度和网民的情绪,对社会科研和调查有着重要的帮助。

    针对特定领域的新词发现方法

    公开(公告)号:CN105760366B

    公开(公告)日:2018-06-29

    申请号:CN201610150038.6

    申请日:2016-03-16

    Abstract: 本发明提供一种针对特定领域的新词发现方法,包括以下步骤:步骤1,文档预处理;步骤2,构建候选新词集;其中,每个候选新词由词语、该词语距离所述中心词语的距离向量值以及所述中心词语均采用新词表述方式表达。步骤3,候选新词挖掘;优点为:针对特定领域的新词发现方法,采用更灵活的新词表达方式,将数据挖掘领域的关联规则方法引入新词发现过程,并创新地提出将词汇与指定关键词的距离向量作为关联规则挖掘的重要特征,由此可快速准确全面的识别出文档包含的所有新词。

Patent Agency Ranking