-
公开(公告)号:CN112668316A
公开(公告)日:2021-04-16
申请号:CN202011290565.X
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F40/258 , G06F40/205 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种word文档关键信息抽取方法,其包括:步骤一、获取源word文档,遍历word文档的段落,对于任一段落,判断段落是否具有模板样式属性,若具有模板样式属性,则进入步骤二,否则进入步骤三;步骤二、根据段落的模板样式属性获取段落信息类别,并与预设的待抽取关键信息类别列表进行匹配,将段落抽取并输入至输出文件一中所属信息类别对应的区域;步骤三、基于预设的神经网络模型识别段落的信息类别,并与预设的待抽取关键信息类别列表进行匹配,将段落抽取并输入所属信息类别对应的区域。本发明利用了word文档中的模板样式属性的信息,从而极大地提高了word文档抽取关键信息地效率。
-
公开(公告)号:CN110442421A
公开(公告)日:2019-11-12
申请号:CN201910578655.X
申请日:2019-06-28
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F9/455
Abstract: 本发明提出一种基于Kubernetes的通用服务转换方法和系统,包括:构建由多个节点构成的Kubernetes系统,其中节点的Pod设有用于提供服务的原服务容器,并通过在Pod中新添加容器的方式或通过原容器镜像的方式,在节点的Pod中加入转换程序;每当发生一次服务调用请求,转换容器或程序根据配置,将服务调用请求转换为原服务执行请求,通过调用原服务容器,提供相对应的服务,并转换成该服务调用请求所对应的服务结果。本发明可解决Kubernetes服务与调用者之间接口不一致的问题;并可减少转换程序与服务程序、调用程序之间的网络开销,同时结合Kubernetes特性,服务程序重新部署时,转换程序自动跟随部署。
-
公开(公告)号:CN110414680A
公开(公告)日:2019-11-05
申请号:CN201910667447.7
申请日:2019-07-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了基于众包标注的知识加工系统,包括:粗知识管理模块,其用于导入待标注知识;任务发布模块,其用于生成标注任务并发布,所述标注任务包括待标注知识、标注员、审核员和标注字段;知识标注模块,其用于对所述标注任务进行标注处理,并将已处理的标注任务生成审核任务;知识审核模块,其用于对所述审核任务对应的标注结果进行审核处理。本发明采用众包标注的形式进行知识加工,加工过程辅以机器学习进行自动抽取,通过人机结合的知识加工过程,形成有效的综合知识库。
-
公开(公告)号:CN110287314A
公开(公告)日:2019-09-27
申请号:CN201910418900.0
申请日:2019-05-20
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。
-
公开(公告)号:CN111859980B
公开(公告)日:2024-04-09
申请号:CN202010549951.X
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/9536 , G06N3/0442 , G06N3/0464 , G06N3/084
Abstract: 本申请涉及一种讽刺类型的文本识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;采用多种方式提取待处理文本的目标特征信息,目标特征信息为从特征集合中选择出来的多个特征信息的加权和表示;根据第一神经网络模型对目标特征信息的识别结果确定待处理文本的文本类型,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据是否为目标类型。本申请从多个维度捕获词间关联特征,并从讽刺文本的情感倾向转换出发,挖掘词语间的冲突性,进而充分体现句子中地所蕴含的讽刺含义,最终准确、合理地识别讽刺文本。
-
公开(公告)号:CN111737590B
公开(公告)日:2023-09-12
申请号:CN202010442783.4
申请日:2020-05-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/33
Abstract: 本发明公开了社交关系挖掘方法、装置、电子设备以及存储介质。所述方法包括:获取群组的对话流数据;将所述对话流数据划分为多个对话队列,其中,各对话队列的时间跨度小于或等于时间阈值;根据各对话队列中对话信息的上下文相关度,确定构成真实对话场景的对话队列;提取所述构成真实对话场景的对话队列所对应的用户,作为具有社交关系的用户。基于该方法及装置,可以还原对话场景,进而更加精准地映射对话用户,挖掘用户社交关系。
-
公开(公告)号:CN113449601A
公开(公告)日:2021-09-28
申请号:CN202110591209.X
申请日:2021-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明提出一种基于渐进性平滑损失的行人重识别模型训练方法,包括:获取训练样本数据;其中,所述训练样本数据包括多个包含行人的视频;将所述训练样本数据输入至初始模型中,得到对应各所述包含行人的视频的帧级别特征和视频级别特征;分别基于所述帧级别特征和所述视频级别特征计算第一损失和第二损失;基于所述第一损失和所述第二损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN110222262A
公开(公告)日:2019-09-10
申请号:CN201910435231.8
申请日:2019-05-23
Applicant: 国家计算机网络与信息安全管理中心 , 北京天润基业科技发展股份有限公司
IPC: G06F16/9535 , G06K9/00 , G06K9/62 , G06N20/00
Abstract: 本发明公开一种利用新闻评论行为的网络用户人格自动识别方法:步骤一、利用新闻语料资源,对每个新闻文本内容进行中文分词;筛选掉停用词后得到该语料库的所有不同的词条,作为新闻内容词典;步骤二、利用机器学习方法,建立新闻评论行为到人格的预测模型;步骤三、在得到预测模型之后,针对新的网络用户,获得该新的网络用户参与评论的所有新闻,采用获得归一化之后的自变量,利用训练得到的模型实现对网络用户人格的自动识别。本发明对人格的自动识别,无需用户自我报告,时效性高;对用户没有任何干扰,生态效度高;可以做到大规模用户人格的自动识别;人格识别效率提高;满足在新闻网站场景下对人员人格特征的监测要求。
-
公开(公告)号:CN108628703A
公开(公告)日:2018-10-09
申请号:CN201810225421.2
申请日:2018-03-19
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提供一种基于视觉相似性镜像网站发现方法及系统,该方法的步骤包括:对网页页面进行初步分块,将得到的块作为DOM树的结点;对可分割的结点继续分割,将分出的新块作为该结点的孩子结点;对于不可分割的结点,将该结点的块作为页面块存入页面块池中,如此循环迭代分块,直至得到全部的页面块;检测出页面中的分隔条,确定分割条的权重;基于分割条的权重进行重建,得到语义块;将语义块转换成图像,提取图像的签名特征;根据上述步骤提取目标网页和基准网页的各语义块的签名特征,基于签名特征通过EMD距离算法计算目标网页和基准网页之间的距离,如果该距离小于一设定阈值,则判定该目标网页的网站属于镜像网站。
-
公开(公告)号:CN114861029B
公开(公告)日:2024-09-13
申请号:CN202210411631.7
申请日:2022-04-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/953 , G06Q10/0639 , G06Q50/00
Abstract: 本发明实施例公开了舆情塑造过程分析方法、装置、电子设备以及存储介质。该方法包括:获取目标舆情事件的舆情数据以及目标舆情事件的舆情数据的发布方;根据舆情数据,确定舆情主题;根据舆情数据随时间的变化情况,将目标舆情事件划分为多个发展阶段;根据目标舆情事件在每个发展阶段的舆情数据,确定在相应发展阶段的核心议题;从在每个发展阶段的舆情数据的发布方中,识别在相应发展阶段的舆情塑造主体;根据在每个发展阶段的核心议题与舆情主题的匹配情况,对目标舆情事件在多个发展阶段的舆情塑造主体对于目标舆情事件的舆情塑造效果进行评估。基于该方法,可以实现对于舆情塑造过程的全面分析,并实现对于舆情塑造效果进行准确评估。
-
-
-
-
-
-
-
-
-