-
公开(公告)号:CN110377059A
公开(公告)日:2019-10-25
申请号:CN201910810291.3
申请日:2019-08-29
Applicant: 哈尔滨工程大学
IPC: G05D1/12
Abstract: 本发明属于多水下机器人协同控制领域,具体涉及一种基于狮群算法的多AUV围捕者协同控制方法。本发明针对单个AUV无法完成复杂水下任务、围捕机器人智能性交互性不足以及实际三维环境中存在障碍物的情况,提出了一种基于狮群算法的多AUV围捕者协同控制方法。本发明针对围捕者数量为三个或三个以上的情况。在围捕者小组中围捕者移动性能相当的情况下,通过下潜与上浮操作,与目标保持同一水深的同时,将目标包围在几何中心,并以目标为圆心,距离r为半径,均匀的分布在目标周围,完成协同围捕。本发明应用狮群算法(LGA)进行AUV围捕协同控制,围捕效率更高,收敛特性更好。
-
公开(公告)号:CN109886574A
公开(公告)日:2019-06-14
申请号:CN201910126437.2
申请日:2019-02-20
Applicant: 哈尔滨工程大学
IPC: G06Q10/06
Abstract: 本发明属于信息处理领域,公开了一种基于改进阈值法的多机器人任务分配方法,包含如下步骤:定义第m次迭代时机器人i对任务j的响应阈值;在第m次迭代,阈值刺激差最大时对应的任务即机器人i在t时刻要执行的任务;如果机器人执行任务成功或失败且还有未被执行的任务,继续在未被执行的任务中选择阈值刺激差最大时对应的任务去执行;当机器人进入等待状态或等待区即没有可执行任务时,令机器人不断寻找可执行的任务;直到所有任务都被执行完成即完成一次迭代时,重置机器人和任务点的位置,根据阈值更新公式计算第m+1次迭代时机器人i对任务j的响应阈值和阈值刺激差。本发明优化了多任务处理能力,提高了算法的效率,提高了系统的资源利用率。
-
公开(公告)号:CN109492516A
公开(公告)日:2019-03-19
申请号:CN201811028694.4
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明为一种基于DGRU神经网络的UUV集群行为识别方法,属于深度学习领域;本发明对GRU神经网络进行改进,提出了防止信息丢失的DGRU神经网络,并应用DGRU神经网路建立欠驱动UUV集群行为识别模型;本发明包括数据预处理阶段、模型训练阶段和模型预测阶段,具体包括如下步骤:(1)对UUV集群行为数据集进行数据清洗;(2)利用数据预处理后的数据集训练DGRU神经网络,建立UUV集群行为识别模型;(3)获取当前软件失效数据并采用(1)中同样的方法进行数据归一化处理,然后输入(2)中获得的预测模型进行UUV的集群行为识别,得到识别结果;应用该模型可以精确识别欠驱动UUV集群行为的方法,克服了传统UUV集群性行为识别技术的缺点。
-
公开(公告)号:CN109344960A
公开(公告)日:2019-02-15
申请号:CN201811017376.8
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明属于深度学习领域,具体涉及一种防止数据信息丢失的DGRU神经网络及其预测模型建立方法。DGRU神经网络预测模型建立方法包括如下步骤:1、对数据集进行数据清洗,包括处理数据不平衡问题、归一化问题;2、利用数据预处理后的数据集训练DGRU神经网络,建立预测模型;3、根据模型预测结果。DGRU神经网络,包括输入层、输出层和隐含层,隐含层由DGRU神经元构成,DGRU是在GRU的基础上改进的,DGRU神经网络的输入数据为经过数据预处理后的t时刻的集群行为数据 输出数据为预测的下一刻集群行为 本发明增加了不同层之间的信息传递,增强模型的记忆能力,克服传统GRU神经网络信息丢失问题,应用DGRU建立的预测模型,提高了预测精度。
-
公开(公告)号:CN109886574B
公开(公告)日:2023-02-14
申请号:CN201910126437.2
申请日:2019-02-20
Applicant: 哈尔滨工程大学
IPC: G06Q10/0631
Abstract: 本发明属于信息处理领域,公开了一种基于改进阈值法的多机器人任务分配方法,包含如下步骤:定义第m次迭代时机器人i对任务j的响应阈值;在第m次迭代,阈值刺激差最大时对应的任务即机器人i在t时刻要执行的任务;如果机器人执行任务成功或失败且还有未被执行的任务,继续在未被执行的任务中选择阈值刺激差最大时对应的任务去执行;当机器人进入等待状态或等待区即没有可执行任务时,令机器人不断寻找可执行的任务;直到所有任务都被执行完成即完成一次迭代时,重置机器人和任务点的位置,根据阈值更新公式计算第m+1次迭代时机器人i对任务j的响应阈值和阈值刺激差。本发明优化了多任务处理能力,提高了算法的效率,提高了系统的资源利用率。
-
公开(公告)号:CN109839933B
公开(公告)日:2022-04-29
申请号:CN201910126801.5
申请日:2019-02-20
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于多机器人任务分配领域,具体涉及一种基于VDSOM算法的多机器人任务分配方法。这种方法不仅有效地实现了多机器人的任务分配,同时也有效地避开了环境中的障碍物,从而使多机器人任务分配更具备实用性和高效性。发明主要包括:初始化神经网络,寻找某一输入神经元的获胜神经元(机器人),以确定该任务目标点是由那个机器人执行;设计一个邻域函数,用来确定在邻域范围内受获胜神经元影响的输入神经元;控制获胜神经元和其相邻神经元向目标的位置坐标移动,根据矢量方向方法,在成功避开环境中障碍物的前提下,向目标点移动一定距离。修改权值,以确定下一次的获胜神经元。
-
公开(公告)号:CN109194708B
公开(公告)日:2021-07-13
申请号:CN201810821236.X
申请日:2018-07-24
Applicant: 哈尔滨工程大学
Abstract: 本发明为一种基于区块链技术的分布式存储系统及其身份认证方法,属于分布式存储领域;本发明中的身份认证用户分为两种,分别是用户账户和设备账户,每个分布式节点都可以实现节点身份证明功能和节点容错机制,其内部都会开辟一小块区域来存储区块链的内容,记录了所有的账户资料,可以实现行为审计、记录属性日志、增加账户信息和签名服务,没有用户或情报中心的认可,没有任何人可以篡改用户数据或是向系统中非法添加账户,不可能对分布式存储系统中的数据进行更改,从而保证了分布式存储系统中的数据安全。
-
公开(公告)号:CN109839933A
公开(公告)日:2019-06-04
申请号:CN201910126801.5
申请日:2019-02-20
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于多机器人任务分配领域,具体涉及一种基于VDSOM算法的多机器人任务分配方法。这种方法不仅有效地实现了多机器人的任务分配,同时也有效地避开了环境中的障碍物,从而使多机器人任务分配更具备实用性和高效性。发明主要包括:初始化神经网络,寻找某一输入神经元的获胜神经元(机器人),以确定该任务目标点是由那个机器人执行;设计一个邻域函数,用来确定在邻域范围内受获胜神经元影响的输入神经元;控制获胜神经元和其相邻神经元向目标的位置坐标移动,根据矢量方向方法,在成功避开环境中障碍物的前提下,向目标点移动一定距离。修改权值,以确定下一次的获胜神经元。
-
-
-
-
-
-
-