-
公开(公告)号:CN112114254A
公开(公告)日:2020-12-22
申请号:CN202010864946.8
申请日:2020-08-25
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367
Abstract: 本发明提供一种锂离子动力电池开路电压模型融合方法,包括以下步骤:通过OCV实验获得电池全SOC区间的开路电压(OCV)‑荷电状态(SOC)实验曲线;以一定等SOC间隔选取实验曲线上的(SOC,OCV)数据点,通过合理选取不同OCV模型,将选取的数据点代入各OCV模型得到相应OCV‑SOC拟合曲线;在数据点所划分出的每个SOC间隔内,分别计算各OCV‑SOC拟合曲线与实验曲线之间的均方根误差,并据此为各SOC区间中每个OCV函数模型分配不同的权值,经加权融合后,最终获得整个SOC区间的OCV模型。该模型在全SOC区间均能获得高的拟合精度,具有很好的适应性,不再局限于现有技术中单一OCV模型只能在某一特定区间内具有较高的拟合精度,而牺牲其他区间的精确性的缺点。
-
公开(公告)号:CN113671380A
公开(公告)日:2021-11-19
申请号:CN202110968446.3
申请日:2021-08-23
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367
Abstract: 本发明提供一种基于深度学习的动力电池系统多故障诊断方法,包括故障检测和故障隔离两部分,故障检测针对电池故障早期预警问题,使用编码解码架构的深度学习模型,编码过去一段时间窗口内所测端电压、电流和温度序列,利用之后的电流和温度实测值解码出同步的端电压,与实测对比生成残差序列,经软阈值处理后由多级报警评估策略决定是否触发报警,该报警策略能消除误差波动,防止误报警。之后训练故障隔离深度学习模型,输入软阈值处理后的残差序列,隔离模型输出各故障是触发报警诱因的概率,进而隔离出各故障,从而简化了隔离各传感器故障类型的难度。
-
公开(公告)号:CN112858917A
公开(公告)日:2021-05-28
申请号:CN202110052494.8
申请日:2021-01-15
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367 , G01R31/382 , G01R31/385 , G06N3/04 , G06N3/08 , G06N3/12
Abstract: 一种基于遗传算法优化神经网络的电池系统多故障诊断方法,涉及新能源汽车动力电池系统安全领域。对所选动力电池加载动态应力测试实验,对电流传感器采集数据和电压传感器采集数据注入多种类型的故障信号,建立故障特征与故障类型的对应关系,建立神经网络,利用遗传算法对该神经网络进行优化,取得电池系统的电流、电压传感器故障数据,采用min‑max标准化,建立传感器的故障特征与故障类型的样本数据;依据样本建立矩阵导入神经网络中,作为系统输入和目标输出进行训练,建立对多种故障进行综合诊断的检测系统,有效提高了故障诊断的检测范围,同时所引入的遗传算法也提高了神经网络运行的效率以及结果的准确率。
-
公开(公告)号:CN111965547A
公开(公告)日:2020-11-20
申请号:CN202011036224.X
申请日:2020-09-27
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367 , G01R31/382 , G01R31/392 , B60L58/10
Abstract: 本发明提供了一种基于参数辨识法的电池系统传感器故障诊断方法。该方法为:首先根据实验构建电池的OCV-SOC-容量三维响应面、阈值模型及容量估计模型;然后根据容量估计模型得到的容量值和安时积分法得到的SOC在三维响应面中查找到开路电压OCV的参考值;OCV的估计值则通过在线辨识算法估计得到;再将安时积分法得到的SOC代入阈值模型得到当前SOC时的故障诊断阈值;最后将OCV的参考值和估计值之差作为残差用于残差评价,当残差绝对值超过所设阈值即可判断传感器出现故障。本发明不仅考虑了电池老化和SOC对OCV参考值的影响,还考虑了OCV残差在全SOC区间的差异特性,有效降低了在电池全寿命周期传感器故障诊断的误警率和漏警率。
-
公开(公告)号:CN117590269A
公开(公告)日:2024-02-23
申请号:CN202311583308.9
申请日:2023-11-24
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/392 , G01R31/367 , G01R31/396
Abstract: 本发明属于车载动力电池系统健康状态评估技术领域,公开了一种基于充电稀疏大数据的电池系统综合健康状态评估方法,包括步骤1、数据预处理;步骤2、容量衰减评估;步骤3、不一致性演化评估;步骤4、综合健康状态评价。本发明的有益效果在于:将电池系统的健康状态划分为容量衰减健康状态(SOHCap)和不一致性演化健康状态(SOHInc)两部分,同时将容量衰减健康状态和不一致性演化健康状态进行融合处理,得到了电池系统综合健康状态。
-
公开(公告)号:CN115201679A
公开(公告)日:2022-10-18
申请号:CN202210783435.2
申请日:2022-06-27
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/36 , G01R31/367 , G01R31/387 , G01R31/396
Abstract: 本发明具体涉及一种计及不一致性的储能电池系统状态估算方法,包括:在电池组充放电过程中,采集电池特征数据;基于单体电池间的不一致性确定电池组每条支路的特征单体电池,建立等效电路模型;构建用于预测估计电池SOC的观测器,分别得到各条支路的电池SOC估计值;计算各条支路的支路电流与电池组的平均支路电流之间的电流偏差,进而计算各条支路的支路电流标准差;基于支路电流标准差为各条支路分配相应的加权值;基于各条支路的电池SOC估计值及对应的加权值进行加权计算,得到电池组的融合SOC估计值作为其状态估算结果。本发明能够基于单体电池的不一致性建立具有互补性的电池组SOC融合预测框架,进而实现储能电池系统SOC的准确估计。
-
公开(公告)号:CN114970156A
公开(公告)日:2022-08-30
申请号:CN202210583641.9
申请日:2022-05-25
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
Abstract: 本发明涉及车载电池快速充电技术领域,具体涉及用于五阶恒流快速充电的电流选取方法,包括:建立电池的等效电路模型;基于电池的等效电路模型结合五阶恒流充电特性,分析得到各阶电流之间的关系;基于电池的等效电路模型结合各阶电流之间的关系,求解在预设适应度函数下的初始电流组合;基于初始电流组合设计正交实验,进而根据实验结果确定充电的最佳电流组合。本发明的电流选取方法能够提高正交实验初始电流组合选取的准确性和有效性,进而能够准确、高效的确定充电的最佳电流组合,从而能够提高五阶恒流快速充电的优化效果。
-
公开(公告)号:CN114624603A
公开(公告)日:2022-06-14
申请号:CN202210254508.9
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/388 , G01R31/396
Abstract: 本发明公开了一种基于机器学习的电池系统支路电流估计方法,包括以下步骤:包括进行DST,FUDS,UDDS,HPPC四个工况下的离线测试,将整合的数据集进行归一化,设置BP神经网络的参数,对BP神经网络进行训练,得到训练好的BP神经网络,得到支路电流估计值。对比现有技术,本发明的有益效果在于:使用BP神经网络进行支路电流估计,BP神经网络算法比深度学习算法结构简单、训练学习快,占用内存小,更适合移动载运装备。
-
公开(公告)号:CN112526350B
公开(公告)日:2022-05-27
申请号:CN202011453417.5
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/378
Abstract: 考虑热效应影响的锂离子电池峰值功率预测方法,涉及动力电池系统技术领域。本发明是为了解决现有利用电化学模型得到的峰值功率不准确的问题。建立锂离子电池的简化电化学模型;对锂离子电池的简化电化学模型进行参数辨识,得到辨识参数;获得锂离子电池内部变量;得到锂离子电池单体的端电压、不同时刻的电池内部温度和最大放电倍率;在初始放电倍率和最大放电倍率之间,分别找到3个临界放电倍率,从找到的3个临界放电倍率中选出最小值,并结合不同时刻锂离子电池单体的端电压平均值,得到锂离子电池峰值功率。它用于获得电池峰值功率,从而保护电池寿命。
-
公开(公告)号:CN112285569B
公开(公告)日:2022-02-01
申请号:CN202011181863.5
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供一种基于动态阈值模型的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,在阈值模型建立和参数辨识算法两方面进行了改进,在不同温度下进行电路基础特性测试实验,得到等效电路模型参数;建立OCV‑SOC‑Q三维响应面模型;采用带遗忘因子的递推最小二乘法进行模型参数辨识,建立关于R0和τ的动态阈值模型。在实际故障诊断过程当中,利用双扩展卡尔曼滤波算法辨识参数和状态,得到电池R0和τ、容量及SOC;采用温度插值的方法确定参数参考值;确定参数阈值;生成残差;通过对比残差与阈值来判断电池是否发生故障。该方法不仅故障诊断率高,还能避免检测不及时、误警和漏警问题。
-
-
-
-
-
-
-
-
-