-
公开(公告)号:CN109143861B
公开(公告)日:2021-06-29
申请号:CN201811055082.4
申请日:2018-09-07
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于力矩器的变速倾侧动量轮系统主动振动抑制方法,涉及转子振动抑制领域。本发明为了解决经过动平衡的变速倾侧动量轮依然有残留不平衡的问题,以及现有动平衡技术仅能抑制转子质量分布不均引起的倾侧振动等问题。由公式可知,变速倾侧动量轮的转子倾侧角输出φ与力矩输入T呈正比例关系,倾侧角输出φ与转速平方ω2呈近似反比例关系,利用公式(1)在不同转速条件下确定所需施加的校正力矩的幅值和相位,然后利用力矩器对转子施加实时校正力矩,以实现对变速倾侧动量轮的主动振动抑制。本发明方法利用力矩器对转子施加精准的作用力矩,可以有效抑制残留不平衡和多种不理想因素叠加作用引起的倾侧振动一倍频成分。
-
公开(公告)号:CN112947614A
公开(公告)日:2021-06-11
申请号:CN202110120538.6
申请日:2021-01-28
Applicant: 哈尔滨工业大学
IPC: G05D19/02
Abstract: 一种变速倾侧动量轮的主动振动控制方法,属于变速倾侧动量轮振动控制技术领域,用以解决现有的主动振动控制方法不能实现由于转子不平衡对变速倾侧动量轮有效的振动控制的问题。该主动振动控制方法包括:根据所述变速倾侧动量轮中转子、平衡环和电机轴之间的坐标变换关系,建立包含质量不平衡的变速倾侧动量轮系统;利用改进的位置域自适应陷波滤波器对所述变速倾侧动量轮系统中转子倾侧角进行校正,从而实现对变速倾侧动量轮系统的主动振动控制。本发明方法特别适用于变速倾侧动量轮转子变速工况下的主动振动控制,且实现方便,参数整定简单,适合工程应用,同样适用于匀速工况下的主动振动控制。
-
公开(公告)号:CN109114122B
公开(公告)日:2020-12-11
申请号:CN201811112939.1
申请日:2018-09-21
Applicant: 哈尔滨工业大学
IPC: F16D1/08 , F16F15/315
Abstract: 一种应用于倾侧变速飞轮的联轴器,本发明涉及联轴器技术领域。本发明旨在提出一种应用于倾侧变速飞轮的联轴器,以解决目前应用于倾侧变速飞轮的联轴器存在导致转子失稳的问题。所述联轴器包括内轴和套装在内轴上的外轴套;内轴一端面具有一个开有通孔的小凸台,内轴另一端开有盲孔,所述盲孔与小凸台上的通孔贯通,内轴的侧壁上沿圆周方向对称位置开有割槽,割槽轴向上正交地交替地分布;所述外轴套一端外侧具有用于和转子连接的法兰状结构,外轴套的侧壁上沿圆周方向对称位置开有割槽,割槽轴向上正交地交替地分布。本发明设计结构仅有两个零件组成,提高了两轴连接的定位精度,减少了装配工序,使得整个装置的布局更为紧凑。
-
公开(公告)号:CN107992063B
公开(公告)日:2020-08-04
申请号:CN201711498624.0
申请日:2017-12-29
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 基于变参数章动阻尼的变速倾侧动量轮进动控制方法,涉及变速倾侧动量轮的运动控制领域。为了解决变速倾侧动量轮由于转子陀螺效应和两维倾侧运动耦合所引起的稳定性和控制精度降低的问题。通过倾侧回路开环实验,分别辨识变速倾侧动量轮在某一确定转速下直轴和交轴控制对象频率特性;通过倾侧回路开环实验,确定系统章动频率与转速的关系,设计章动阻尼器抑制系统的章动失稳;通过倾侧回路开环实验,分别辨识变速倾侧动量轮直轴和交轴控制对象频率特性,根据不同转速下的交轴频率特性确定章动频率,并依此设计变参数章动阻尼器,从而抑制变速倾侧动量轮的章动失稳,基于进动控制原理给出系统的控制结构。提高了变速倾侧动量轮的稳定性和控制精度。
-
公开(公告)号:CN109211215A
公开(公告)日:2019-01-15
申请号:CN201811265533.7
申请日:2018-10-26
Applicant: 哈尔滨工业大学
Abstract: 一类三自由度挠性支撑转子倾侧振动控制方法,涉及转子的倾侧振动控制领域。本发为了解决针对陀螺飞轮三自由度挠性支撑转子沿赤道轴方向的两维倾侧振动问题。所述方法的实现过程为:陀螺飞轮转子运行在恒转速的条件下,找到使两维倾侧振动一倍频幅值最小的相位;找到使两维倾侧振动一倍频幅值最小的相位,作为每次细分所对应的校正力矩的相位;找到使两维倾侧振动一倍频幅值最小所对应的力矩幅值,作为校正力矩的幅值;在倾侧回路闭环的条件下,将校正力矩分别施加于x、y轴,并与未施加校正力矩时二维倾侧振动一倍频幅值进行比较,直至使倾侧振动得到有效控制。本发明能够实现对不同转速下转子两维倾侧振动的有效控制。
-
公开(公告)号:CN109143861A
公开(公告)日:2019-01-04
申请号:CN201811055082.4
申请日:2018-09-07
Applicant: 哈尔滨工业大学
IPC: G05B13/04
CPC classification number: G05B13/042
Abstract: 一种基于力矩器的变速倾侧动量轮系统主动振动抑制方法,涉及转子振动抑制领域。本发明为了解决经过动平衡的变速倾侧动量轮依然有残留不平衡的问题,以及现有动平衡技术仅能抑制转子质量分布不均引起的倾侧振动等问题。由公式可知,变速倾侧动量轮的转子倾侧角输出φ与力矩输入T呈正比例关系,倾侧角输出φ与转速平方ω2呈近似反比例关系,利用公式(1)在不同转速条件下确定所需施加的校正力矩的幅值和相位,然后利用力矩器对转子施加实时校正力矩,以实现对变速倾侧动量轮的主动振动抑制。本发明方法利用力矩器对转子施加精准的作用力矩,可以有效抑制残留不平衡和多种不理想因素叠加作用引起的倾侧振动一倍频成分。
-
公开(公告)号:CN108803646A
公开(公告)日:2018-11-13
申请号:CN201810889031.5
申请日:2018-08-03
Applicant: 哈尔滨工业大学
IPC: G05D1/08
CPC classification number: B64G1/244
Abstract: 一种变增益章动阻尼器的实现方法,涉及变速倾侧动量轮运动体控制领域。为了解决变速倾侧动量轮由于转子陀螺效应在外加激励作用下产生章动造成系统失稳的问题。技术要点:得到章动频率与动量轮转速的函数关系;根据变速倾侧动量轮运行时的实测转速,确定测速过程中引入的随机噪声变化范围,通过在转速时变和转速稳定条件下章动阻尼器效果的对比,确定章动阻尼器转速量化步长并得到章动阻尼器中心频率;根据章动阻尼器转速量化步长和章动谐振峰幅值大小确定章动阻尼器的参数完成章动阻尼器的设计;将设计的章动阻尼器进行离散化处理以对变速倾侧动量轮进行章动抑制。本发明考虑不同因素的影响,设定转速量化步长,得到效果更优的变增益章动阻尼器。
-
公开(公告)号:CN107992063A
公开(公告)日:2018-05-04
申请号:CN201711498624.0
申请日:2017-12-29
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 基于变参数章动阻尼的变速倾侧动量轮进动控制方法,涉及变速倾侧动量轮的运动控制领域。为了解决变速倾侧动量轮由于转子陀螺效应和两维倾侧运动耦合所引起的稳定性和控制精度降低的问题。通过倾侧回路开环实验,分别辨识变速倾侧动量轮在某一确定转速下直轴和交轴控制对象频率特性;通过倾侧回路开环实验,确定系统章动频率与转速的关系,设计章动阻尼器抑制系统的章动失稳;通过倾侧回路开环实验,分别辨识变速倾侧动量轮直轴和交轴控制对象频率特性,根据不同转速下的交轴频率特性确定章动频率,并依此设计变参数章动阻尼器,从而抑制变速倾侧动量轮的章动失稳,基于进动控制原理给出系统的控制结构。提高了变速倾侧动量轮的稳定性和控制精度。
-
公开(公告)号:CN107064311A
公开(公告)日:2017-08-18
申请号:CN201710416314.3
申请日:2017-06-05
Applicant: 哈尔滨工业大学
IPC: G01N29/34
Abstract: 一种全向型A0模态兰姆波电磁超声换能器,解决了现有A0模态兰姆波电磁超声换能器的模式单一性差、换能效率低和激发兰姆波强度小的问题。所述换能器:圆柱形磁铁与第一~第N空心圆柱形磁铁均通过背板竖直、同轴且同形心地由内向外地设置在壳体的内部。相邻的两个磁铁极性相反设置。在壳体的开口端上、沿着圆柱形磁铁的外缘和空心圆柱形磁铁的内、外缘设置有宽度相等的环形子线圈。同一空心圆柱形磁铁内、外缘的两个环形子线圈同向绕制,相邻的两个空心圆柱形磁铁内缘的两个环形子线圈反向绕制,圆柱形磁铁外缘和第一空心圆柱形磁铁内缘的两个环形子线圈反向绕制。第一环形子线圈的内径为λ‑W,相邻环形子线圈的最小间距为0.5λ‑W。
-
公开(公告)号:CN106441255A
公开(公告)日:2017-02-22
申请号:CN201610805558.6
申请日:2016-09-07
Applicant: 哈尔滨工业大学
IPC: G01C19/00
CPC classification number: G01C19/00
Abstract: 本发明是基于陀螺飞轮的航天器角速率实时线性化测量方法,属于惯性导航领域。本发明为了解决利用陀螺飞轮在转子大倾侧角工作状态实现二维航天器角速率测量所存在的误差大及实时性差的问题,进而提出了基于陀螺飞轮的航天器角速率实时线性化测量方法。本发明方法包括:步骤一、建立陀螺飞轮系统的运动学方程;步骤二、建立陀螺飞轮系统的动力学方程;步骤三、陀螺飞轮非线性动力学方程坐标变换;步骤四、Lypapunov线性化陀螺飞轮动力学方程;步骤五、基于陀螺飞轮的实时线性测量方程实现二维角速率测量。本发明适用于航天器姿态控制与测量。
-
-
-
-
-
-
-
-
-