-
公开(公告)号:CN118957527B
公开(公告)日:2025-02-14
申请号:CN202411450626.2
申请日:2024-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明主要提出一种基于HiPIMS及离子注入技术的FeCrAlY耐磨损腐蚀涂层制备方法,包括:步骤一、将工件依次进行酸洗、清洗、漂洗及脱水烘干;步骤二、将经处理后的工件置于离子注入设备真空室中,进行离子注入处理;步骤三、将工件放入磁控溅射真空室内,进行弧光增强等离子体刻蚀清洗处理;步骤四、沉积Al打底层;步骤五、开启磁控FeCrAlY靶源进行涂层镀制;步骤六、关真空系统;步骤七、取出工件进行超声酒精清洗,烘干后放入真空袋。本发明通过HiPIMS及离子注入技术,在工件上形成FeCrAlY涂层,起到抗高温、耐磨损、耐腐蚀效果,预注入沉积的Al元素可在涂层受损时向外扩散起到自修复作用,延长使用寿命。
-
公开(公告)号:CN118957527A
公开(公告)日:2024-11-15
申请号:CN202411450626.2
申请日:2024-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明主要提出一种基于HiPIMS及离子注入技术的FeCrAlY耐磨损腐蚀涂层制备方法,包括:步骤一、将工件依次进行酸洗、清洗、漂洗及脱水烘干;步骤二、将经处理后的工件置于离子注入设备真空室中,进行离子注入处理;步骤三、将工件放入磁控溅射真空室内,进行弧光增强等离子体刻蚀清洗处理;步骤四、沉积Al打底层;步骤五、开启磁控FeCrAlY靶源进行涂层镀制;步骤六、关真空系统;步骤七、取出工件进行超声酒精清洗,烘干后放入真空袋。本发明通过HiPIMS及离子注入技术,在工件上形成FeCrAlY涂层,起到抗高温、耐磨损、耐腐蚀效果,预注入沉积的Al元素可在涂层受损时向外扩散起到自修复作用,延长使用寿命。
-
公开(公告)号:CN118746574A
公开(公告)日:2024-10-08
申请号:CN202410748992.X
申请日:2024-06-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G01N21/65
Abstract: 本发明涉及一种腐蚀产物高精度高灵敏度检测设备及方法,该设备至少包括相干拉曼散射单元、共聚焦拉曼显微镜单元、原位腔单元。相干拉曼散射单元包括双输出的相干拉曼激光器以及相应的两路激光光路,输出固定波长的为斯托克斯激光束,输出波长范围可调的为泵浦激光束,通过功率控制,调谐波长,时间延迟,使两路激光脉冲同步合束加强,通过共聚焦拉曼显微镜单元入射到所述原位腔单元内的待测腐蚀产物样品,合束激光束与待测腐蚀产物样品中分子固有振动模式的振动频率一致时,待测样品中的分子固有振动模式得到振动增强。本发明实施将自发拉曼与受激相干拉曼散射结合,提升了拉曼信号强度,可应用于待测样品腐蚀产物的高精度高灵敏度分析。
-
公开(公告)号:CN118486388B
公开(公告)日:2024-09-27
申请号:CN202410940427.3
申请日:2024-07-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立基于芯体表面化学成分的核反应堆控制棒寿命预测方法,主要通过X射线荧光光谱分析法快速测量控制棒芯体表面化学成分,根据前期建立的控制棒芯体化学成分计算模型,可以计算控制棒芯体内部所有核素的含量,然后根据测量区域所有核素含量结果来计算控制棒的反应性价值,最后通过对比控制棒反应性价值和原始价值,进一步分析控制棒的堆内剩余寿命。本发明方法可以快速计算控制棒各个区域的反应性价值计算,较准确地预测控制棒的堆内剩余寿命,为核反应堆堆芯设计提供重要的基础数据和计算模型。
-
公开(公告)号:CN118627403A
公开(公告)日:2024-09-10
申请号:CN202411106775.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立一种掺杂二氧化铀陶瓷燃料力学性能的计算方法。主要通过模型计算不同二氧化锆掺杂量和不同燃耗深度条件下的掺杂二氧化铀陶瓷燃料的组成成分;根据计算的组成成分结果,制备一系列模拟不同二氧化锆掺杂量和不同燃耗深度的二氧化锆掺杂二氧化铀燃料;然后测量模拟不同二氧化锆掺杂量和不同燃耗深度掺杂二氧化铀材料的杨氏模量、硬度、断裂韧性、断裂强度力学性能数据;然后基于机器学习方法,建立一种不同二氧化锆掺杂量和不同燃耗深度条件下二氧化铀陶瓷燃料力学性能的计算模型和方法。本发明方法可以定量预测二氧化锆掺杂二氧化铀陶瓷燃料的力学性能,有助于准确评估掺杂二氧化铀陶瓷燃料的堆内反应行为。
-
公开(公告)号:CN117929130B
公开(公告)日:2024-06-07
申请号:CN202410319100.4
申请日:2024-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
IPC: G01N3/08 , G01N15/0205
Abstract: 本发明提出一种小尺寸球形核燃料颗粒压碎强度的测量方法,包括下列步骤:步骤1:获取小尺寸球形核燃料样品;步骤2:量测所述样品颗粒的粒径大小;步骤3:对所述样品进行压碎,获得所述样品的压碎载荷;步骤4:根据所述样品颗粒粒径大小及所述压碎荷载计算所述样品的压碎强度。本发明的量测方法使单个球形核燃料颗粒在整个压碎强度测量过程中易于转运;本方法可直接针对单个球形核燃料颗粒的直径和压碎载荷进行精确测量;采用本方法测量单个球形核燃料颗粒的压碎强度所需的辅助设备少,操作方式简便易行,测量效率高。
-
公开(公告)号:CN117910282A
公开(公告)日:2024-04-19
申请号:CN202410315133.1
申请日:2024-03-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
IPC: G06F30/20 , G06F17/10 , G16C60/00 , G01N25/20 , G06F119/08 , G06F119/14
Abstract: 本发明提出一种掺杂氧化物核燃料的热导率计算方法,包括:步骤1,建立掺杂材料对热传导过程中声子的散射系数计算模型;掺杂材料形成AxBy型固溶体材料;步骤2,分别建立掺杂材料中A类点阵缺陷和B类点阵缺陷所产生的声子散射系数计算模型;步骤3,建立计算替代原子导致的声子散射系数模型;步骤4,建立前述步骤中各声子散射系数模型中各参数的计算方法;步骤5,根据前述步骤中的结果计算掺杂材料的热导率。本发明基于掺杂前氧化物材料的热导率数据,经过计算即可直接获得掺杂后材料的热导率,无需额外单独制备热导率实验测量所需的标准尺寸样品,从而能够快速反映被研究材料产品的热物理性能状态,降低新材料的研发成本,缩短研发周期。
-
公开(公告)号:CN115221457A
公开(公告)日:2022-10-21
申请号:CN202211140526.0
申请日:2022-09-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明提出一种定量计算控制棒芯体的辐照肿胀量的方法,包括:计算初始未辐照时半径为R0、长度为L的控制棒芯体包含的原子总数N0;计算经辐照时间x后半径变为Rx、长度不变的控制棒芯体包含的原子总数Nx;根据Nx=N0得出Rx关于R0的表达式;计算辐照过程由化学成分变化引起的控制棒芯体的半径肿胀量;通过压缩蠕变试验估算控制棒芯体的热蠕变速率;计算辐照过程由高温蠕变引起的控制棒芯体的半径肿胀量;计算控制棒芯体的辐照肿胀量。本发明可以得出控制棒芯体的辐照肿胀随辐照时间的变化规律,计算结果与反应堆控制棒肿胀的实测结果符合性较好,验证了控制棒芯体辐照肿胀的计算方法的准确性。
-
公开(公告)号:CN118627403B
公开(公告)日:2024-11-26
申请号:CN202411106775.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立一种掺杂二氧化铀陶瓷燃料力学性能的计算方法。主要通过模型计算不同二氧化锆掺杂量和不同燃耗深度条件下的掺杂二氧化铀陶瓷燃料的组成成分;根据计算的组成成分结果,制备一系列模拟不同二氧化锆掺杂量和不同燃耗深度的二氧化锆掺杂二氧化铀燃料;然后测量模拟不同二氧化锆掺杂量和不同燃耗深度掺杂二氧化铀材料的杨氏模量、硬度、断裂韧性、断裂强度力学性能数据;然后基于机器学习方法,建立一种不同二氧化锆掺杂量和不同燃耗深度条件下二氧化铀陶瓷燃料力学性能的计算模型和方法。本发明方法可以定量预测二氧化锆掺杂二氧化铀陶瓷燃料的力学性能,有助于准确评估掺杂二氧化铀陶瓷燃料的堆内反应行为。
-
公开(公告)号:CN118291870A
公开(公告)日:2024-07-05
申请号:CN202410411422.1
申请日:2024-04-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: C22C38/06 , C22C38/02 , C22C38/04 , C22C38/44 , C22C38/48 , C22C38/50 , C22C30/00 , C22C33/04 , C21D1/00 , C21D6/00 , C21D8/02
Abstract: 本发明提供一种基于Sigma相弥散强化的耐蚀奥氏体不锈钢材料及制备方法,在Fe20Cr25NiNb奥氏体不锈钢的基础上,通过增加Cr+Al含量和调控热处理工艺,在奥氏体不锈钢基体内形成大量弥散分布的亚微米Sigma相,起到弥散强化作用,可以显著提高奥氏体不锈钢材料的力学强度;另一方面,在奥氏体不锈钢基础上添加一定量的Al和Ti元素,Al和Ti元素在高温氧化环境中易于形成致密的Al2O3和TiO2氧化膜,保护金属基体,从而提高奥氏体不锈钢材料的高温耐蚀性能。
-
-
-
-
-
-
-
-
-