-
公开(公告)号:CN108712852B
公开(公告)日:2019-07-30
申请号:CN201810764994.2
申请日:2018-07-12
IPC: H05K7/20
Abstract: 本发明提供了一种气液两相混合喷射的微通道散热器,其包括上盖板、气液混合喷射结构、微通道板、加热器、底座;所述气液两相混合射流结构包括冷却液入口、横流液体入口、射流进入腔、射流孔和气液混合流出口。冷却液先由冷却液入口流入,一部分经横流液体入口流向微通道板形成横流液体进行换热,另一部分流向射流进入腔,与进气口流入的气体混合后经射流孔喷射到微通道板进行换热,同时与横流液体入口流入微通道中的冷却液混合,使微通道中冷却液产生紊乱,最终由的气液混合流出口流出。本发明采用气液两相混合喷射对微通道内横流液体进行冲击,实现强化换热,并抑制微通道沸腾非稳定性。此外,还具有结构紧凑、体积小、制造工艺简单等特点。
-
公开(公告)号:CN106735263B
公开(公告)日:2019-01-18
申请号:CN201611138457.4
申请日:2016-12-12
Abstract: 本发明公开了一种金属纤维的熔抽制造装置及制作方法,通过设置收集槽和架设在收集槽上方的石墨坩埚,将金属线材、块材或粉末填入石墨坩埚的坩埚箱体内,经坩埚箱体上的加热装置加热熔化形成金属熔浆,同时经坩埚箱体侧壁上的进气口通入还原性气体从而在坩埚箱体内形成正压,金属熔浆在空气压力和重力的作用下沿坩埚箱体底部下料咀流出形成金属悬滴,可转向的高压喷嘴连接空气压缩机后喷出高速气体将悬滴吹离,通过调整高压喷嘴的空气喷射方向,可改变金属纤维下落位置实现均匀铺毡,本发明摆脱了传统熔抽法制造金属纤维中对旋转抽丝盘的依赖,能够实现金属纤维的高效制造,具有操作简单,生产高效,铺毡均匀的优点。
-
公开(公告)号:CN106735267A
公开(公告)日:2017-05-31
申请号:CN201611151710.X
申请日:2016-12-14
Abstract: 本发明公开了一种铁磁性金属纤维的制造装置及方法,利用一对辊筒配合夹送铁磁性线材缓慢竖直向下移动;加热装置对铁磁性线材进行加热使铁磁性线材的下端熔融形成悬滴;滚筒高速转动,所述滚筒转动时从所述悬滴中抽出铁磁性金属纤维;铁磁性金属纤维在重力和滚筒的离心力共同作用下甩出滚筒并掉入到布有磁场的收集槽当中进行冷却;调整磁场的强度和/或位置,使铁磁性金属纤维在磁场诱导作用下均匀铺毡形成金属纤维毡。高速转动的滚筒能够快速地从悬滴当中抽出铁磁性金属纤维,结构简单、操作简便,并且生产高效。收集槽所在地区域形成磁场,通过调整磁场的大小或位置,能够使铁磁性金属纤维均匀铺毡形成金属纤维毡,具有铺毡均匀的优点。
-
公开(公告)号:CN119636074A
公开(公告)日:2025-03-18
申请号:CN202411910765.9
申请日:2024-12-24
IPC: B29C64/379 , B33Y40/20 , B33Y80/00
Abstract: 本发明公开了一种双光子聚合增材制造的后处理工艺及3D打印产品,在上述后处理工艺中,3D打印产品在干燥前始终处于液体环境中,此后采用低表面张力的干燥方式对3D打印产品进行干燥,减少了在显影、定影中溶液替换以及干燥过程中溶液挥发时液体的表面张力可能导致的3D打印产品的弯曲或倒伏程度,避免了3D打印产品的顶部贴底的情况。通常来说,经过上述两个步骤后,3D打印产品的大高宽比结构仍然会有一定程度的倒伏,因此,本技术方案采用热风枪逆3D打印产品的倒伏方向吹拂,使3D打印产品的倒伏部位恢复直立状态。上述后处理工艺的各步骤协同作用,保证了具有大高宽比的3D打印产品在后处理过程中不会出现结构失效的问题。
-
公开(公告)号:CN118653931A
公开(公告)日:2024-09-17
申请号:CN202410807407.9
申请日:2024-06-21
IPC: F02K9/64
Abstract: 一种周期性微通道的回流式火箭发动机再生冷却结构,包括外壳体和内壳体,外壳体和内壳体之间的空间构成容纳腔,容纳腔内设有冷却流道,冷却流道由TPMS晶胞以共形映射的晶胞排布方式构成,且冷却流道包括第一子域和第二子域,第一子域包括若干相互连通的第一流道,第二子域包括若干相互连通的第二流道,各第一流道和第二流道相互间隔分布;还包括设于外壳体的进液口,进液口连通于各第一流道的进口端,第一流道的进口端连通第二流道的出口端,各第二流道出口端连通出液口。基于共形映射的晶胞排布方式使TPMS结构特点高效发挥,同时具有TPMS特点的回流式冷却流道延长了冷却液流动路径,简化冷却液的收集和管理系统。
-
公开(公告)号:CN108362149A
公开(公告)日:2018-08-03
申请号:CN201810113317.4
申请日:2018-02-05
IPC: F28D15/04
Abstract: 本发明公开了一种具有多尺度表面结构特征的微通道换热板的制造方法,首先由多齿锯片铣刀组合刀具在金属基板上加工出微米尺度特征的阵列式微通道结构,再通过激光加工方式在微通道底部加工出尺度更小的具有不同结构形状的微纳表面结构,然后与密封板和盖板封装得到微通道换热板。利用该种加工方法在微通道中生成微纳米复合结构可以有效增加气泡核化点、增大有效换热面积、改善流型结构,从而实现强化沸腾换热,提高微通道传热系数的目的,同时该种加工方法具有设备要求低、加工工艺简单、生产成本低等优点。本发明研制出的具有多尺度表面结构特征的微通道阵列结构在电子设备散热领域有着广阔的应用前景。
-
公开(公告)号:CN107275319A
公开(公告)日:2017-10-20
申请号:CN201710646994.8
申请日:2017-08-01
IPC: H01L25/075 , H01L33/64
CPC classification number: H01L25/0753 , H01L33/641 , H01L33/648
Abstract: 本发明公开了一种LED芯片平板热管集成封装结构及其制备方法,其包括散热翅片、平板热管、电路层、若干LED芯片和芯片封装材料。所述平板热管蒸发面为ALN绝缘陶瓷板,冷凝面为紫铜壳体板,蒸发面上设有辐射状内凹槽的多孔毛细吸液芯结构,冷凝面上设有薄层多孔吸液芯结构,蒸发面与冷凝面直接贴合。所述LED芯片直接设置在平板热管蒸发面ALN绝缘陶瓷板上。采用ALN绝缘陶瓷板替代传统金属板作为平板热管的蒸发面,无需设置绝缘层,大大减少了封装基板与LED芯片的热应力,显著减少了系统热阻、提升了散热效率,延长了LED的使用寿命及工作可靠性。
-
公开(公告)号:CN106282852B
公开(公告)日:2017-10-20
申请号:CN201610827762.8
申请日:2016-09-18
Abstract: 一种混合金属纤维烧结毡的低温液相烧结成形方法,涉及复合金属纤维。1)将金属纤维按要求剪成多段,得到多种金属纤维段;2)将锌和锡加热融化混合得金属溶液,再将金属纤维段投入到金属溶液中,捞出后冷却;3)重复步骤2)直至金属纤维段表面都镀覆一层锌锡混合层,得混合金属纤维,再置于磨具中;4)采用磨具压制板将混合金属纤维压制在磨具的型腔内,使混合金属纤维充满整个型腔;5)将磨具放入烧结炉,使混合金属纤维融化,当烧结炉温度低于100℃时通入N2,当烧结炉温度达到200℃时通入H2,锌锡金属在液态下向混合金属纤维交叉点扩散聚集,待烧结炉的温度设定程序执行完毕后,随炉冷却,得混合金属纤维烧结毡。
-
公开(公告)号:CN106282852A
公开(公告)日:2017-01-04
申请号:CN201610827762.8
申请日:2016-09-18
CPC classification number: C22C47/04 , B22F1/025 , B22F3/002 , B22F3/1035 , B22F2998/10 , C22C47/14 , B22F3/02
Abstract: 一种混合金属纤维烧结毡的低温液相烧结成形方法,涉及复合金属纤维。1)将金属纤维按要求剪成多段,得到多种金属纤维段;2)将锌和锡加热融化混合得金属溶液,再将金属纤维段投入到金属溶液中,捞出后冷却;3)重复步骤2)直至金属纤维段表面都镀覆一层锌锡混合层,得混合金属纤维,再置于磨具中;4)采用磨具压制板将混合金属纤维压制在磨具的型腔内,使混合金属纤维充满整个型腔;5)将磨具放入烧结炉,使混合金属纤维融化,当烧结炉温度低于100℃时通入N2,当烧结炉温度达到200℃时通入H2,锌锡金属在液态下向混合金属纤维交叉点扩散聚集,待烧结炉的温度设定程序执行完毕后,随炉冷却,得混合金属纤维烧结毡。
-
公开(公告)号:CN119857192A
公开(公告)日:2025-04-22
申请号:CN202411992294.0
申请日:2024-12-31
IPC: A61M5/142
Abstract: 本发明公开了一种基于声流控的植入式药物释放芯片,其包括生物相容性基体、锐边悬臂微泵和药物;生物相容性基体具有容纳药物的腔室以及与腔室连通的输出通道,输出通道用于含有药物的液体的输出;锐边悬臂微泵设于输出通道中,包括向输出通道内侧延伸的至少一锐边悬臂单元,所述锐边悬臂单元在超声波激励下通过声流效应控制含有药物的液体的输送。本发明还公开了其制作方法。本发明可以实现植入器件的无线可编程的选择性药物释放,隔绝药物载体与体内环境的直接接触,实现植入的药物释放器件的高精度药物释放。
-
-
-
-
-
-
-
-
-