-
公开(公告)号:CN109948573B
公开(公告)日:2021-08-17
申请号:CN201910236935.2
申请日:2019-03-27
Applicant: 厦门大学
Abstract: 一种基于级联深度卷积神经网络的噪声鲁棒人脸识别方法,涉及计算机视觉技术。首先设计去噪子网络和人脸识别子网络,在去噪子网络中,利用密集连接的方法,将网络前6层中各层产生的特征图由前往后进行逐层连接,以充分利用浅层网络产生的人脸特征。在人脸识别子网络中采用残差网络结构,利用恒等映射的方法对网络不同层之间进行捷径连接,可有效减少深层网络结构中出现的梯度消失现象。然后采用级联的方法,将去噪子网络和人脸识别子网络进行联合训练,获得噪声鲁棒的人脸表征,并设计了一个联合损失函数用于两个子网络的权值更新。最后根据训练好的网络模型,得到最终的噪声人脸识别结果。
-
公开(公告)号:CN111914110A
公开(公告)日:2020-11-10
申请号:CN202010745156.8
申请日:2020-07-29
Applicant: 厦门大学
IPC: G06F16/532 , G06F16/55 , G06N3/04 , G06N3/08
Abstract: 一种基于深度激活显著区域的实例检索方法,涉及视觉实例检索。1)模型设计:模型包括前向传播模块、模式定位模块和特征提取模块;2)对于给定的图像数据库,数据库中每张图片都作为模型的输入,提取输出的实例定位结果和对应的实例级特征;3)对于每个查询图片,将其作为深度模式挖掘模块的前向传播部分的输入,进行区域性实例特征的提取,将该实例特征与模型在数据库图片上提取出的所有实例级特征进行相似度对比,每张数据库图片中相似度最高区域即为该图上实例检索的结果,该区域对应的相似度即为这张图片的相似度,数据库所有图片按照相似度从高到低依次排列,得到整个数据库的实例检索的结果。可应用于视频媒体的智能化检索、视频编辑。
-
公开(公告)号:CN111913849A
公开(公告)日:2020-11-10
申请号:CN202010746722.7
申请日:2020-07-29
Applicant: 厦门大学
Abstract: 一种用于运维数据的无监督异常检测和鲁棒趋势预测方法,涉及计算机系统异常检测技术和趋势预测技术。1)模型设计:变分自编码器作为异常检测模块,为模型的前半部分;长短时记忆网络作为趋势预测模块,为模型的后半部分;2)原始运维时序数据经历数据补全,归一化处理,以及采用滑动窗口将数据分割成固定长度的时序段输入到模型;3)采用变分自编码器重构输入的时序段,从而分离出异常点,达到异常检测的目的;4)将自编码器重构的时序段输入到趋势预测模块,预测下一时刻的状态值。减少时间序列中原有的异常和噪声对长短时记忆网络的影响,提高长短时记忆网络的鲁棒性;提高性能的同时又减少性能在不同数据之间的波动。
-
公开(公告)号:CN109697726B
公开(公告)日:2020-09-18
申请号:CN201910018068.5
申请日:2019-01-09
Applicant: 厦门大学
Abstract: 一种基于事件相机的端对端目标运动估计方法,涉及计算机视觉的目标运动估计。针对传统相机对目标快速运动和环境光照变化不鲁棒的缺点,提出一种基于事件相机的端对端目标帧间运动估计深度人工神经网络。由于事件相机仅产生异步的视觉事件,而所提出的深度网络需要同步的图像帧用于输入,还提出一种异步视觉事件集到同步图像帧表示的转换。该视觉事件帧能够清晰地展现所对应运动的模式,便于所提出的深度网络对这些模式的提取和识别。所提出的深度网络包含三个主要部分:开始的卷积模块用于提取视觉事件帧上的运动特征、中间的长短时记忆模块用于加速训练与压缩特征和最后的全连接层部分用于实时地预测5自由度的目标二维帧间运动。
-
公开(公告)号:CN107123119B
公开(公告)日:2019-12-17
申请号:CN201710287180.X
申请日:2017-04-27
Applicant: 厦门大学
Abstract: 一种针对多结构数据的指导性采样方法,涉及计算机视觉技术。1)准备输入数据;2)如果当前总采样次数c小于M,那么执行步骤3)~7);否则,结束采样且输出模型假设集Θ;3)如果当前总采样次数c小于b,那么使用随机采样方法采样一个数据子集S;否则使用提出的指导性采样方法采样一个数据子集S;4)使用采样到的数据子集S估计一个模型假设θ;5)对每一个xi∈χ,计算xi与θ的绝对残差到;6)如果当前总采样次数c大于等于b且c是b的整数倍,那么更新窗口大小w且排序得到残差索引的重排列7)把模型假设添加到模型假设集中。
-
公开(公告)号:CN109948573A
公开(公告)日:2019-06-28
申请号:CN201910236935.2
申请日:2019-03-27
Applicant: 厦门大学
Abstract: 一种基于级联深度卷积神经网络的噪声鲁棒人脸识别方法,涉及计算机视觉技术。首先设计去噪子网络和人脸识别子网络,在去噪子网络中,利用密集连接的方法,将网络前6层中各层产生的特征图由前往后进行逐层连接,以充分利用浅层网络产生的人脸特征。在人脸识别子网络中采用残差网络结构,利用恒等映射的方法对网络不同层之间进行捷径连接,可有效减少深层网络结构中出现的梯度消失现象。然后采用级联的方法,将去噪子网络和人脸识别子网络进行联合训练,获得噪声鲁棒的人脸表征,并设计了一个联合损失函数用于两个子网络的权值更新。最后根据训练好的网络模型,得到最终的噪声人脸识别结果。
-
公开(公告)号:CN106683062B
公开(公告)日:2019-06-07
申请号:CN201710018297.8
申请日:2017-01-10
Applicant: 厦门大学
Abstract: 一种静止摄像机下的基于ViBe的运动目标检测方法,A初始化视频帧每个像素点前景计数和鬼影计数。B对二值图预处理。C对二值图进行前景区块划分,去除像素少的前景区块并修改前景计数。D每隔p帧对C中得到的前景计数去噪再鬼影检测。E对经C或D处理后得到的二值图中的前景区块进行内部空洞消除,再进行标记。F每隔q帧对当前视频帧和经E处理后得到的二值图进行边缘检测,生成边缘二值图后执行逻辑与操作,再边缘划分,对得到的边缘标记;统计每个前景区块中的每条边缘被所包括的前景像素个数和其对应的边缘像素个数,判断边缘有效性。G根据F中得到的有效边缘,统计每个前景区块中的有效边缘,修改鬼影计数再进行鬼影检测。
-
公开(公告)号:CN108898621A
公开(公告)日:2018-11-27
申请号:CN201810662407.9
申请日:2018-06-25
Applicant: 厦门大学
IPC: G06T7/246
Abstract: 一种基于实例感知目标建议窗口的相关滤波跟踪方法,能够在基于CNN的相关滤波框架中根据检测的稳定性自适应地选择尺度估计模式以及目标重检测模式,提高算法在尺度估计、快速运动、遮挡、背景干扰等方面的鲁棒性。由EdgeBoxes生成的目标建议窗口基于表观相似度和空间加权排序后得到的都是与目标实例具有高相似度的目标建议窗口,称为实例感知目标建议窗口。实例感知的目标建议窗口由基于CNN的相关滤波器进一步引导至最优位置,从中选取最显著的经引导后的实例感知目标建议窗口,作为目标的尺度估计或者重检测结果,可有效地解决跟踪过程中的尺度变化以及目标丢失。在标准数据集上,提出的方法获得很高的性能指标。
-
公开(公告)号:CN108734151A
公开(公告)日:2018-11-02
申请号:CN201810613931.7
申请日:2018-06-14
Applicant: 厦门大学
Abstract: 基于相关滤波以及深度孪生网络的鲁棒长程目标跟踪方法,涉及计算机视觉技术。通过将相关滤波以及深度孪生网络结合在一个统一的跟踪框架下,能够有效处理长视频中目标遮挡、消失视野等挑战。在该跟踪方法中,所提出的基于D-expert以及C-expert的专家评估机制能有效地对相关滤波以及深度孪生网络共同产生的目标候选位置进行评估筛选,得到最佳的目标跟踪结果,使用该结果来更新相关滤波跟踪器,从而有效避免了相关滤波跟踪器被错误样本更新。提出的目标跟踪方法对长视频中的各类挑战较为鲁棒,能够长时间稳定跟踪目标。
-
公开(公告)号:CN108520530A
公开(公告)日:2018-09-11
申请号:CN201810323668.8
申请日:2018-04-12
Applicant: 厦门大学
Abstract: 基于长短时记忆网络的目标跟踪方法,涉及计算机视觉技术。首先采用基于相似性学习的快速匹配方法对候选目标状态进行预估计,筛选出高质量的候选目标状态,然后将这些高质量的目标状态用长短时记忆网络进行分类。所用的长短时记忆网络包括用于提取特征的卷积层和用于分类的长短时记忆层。卷积层在大规模图像数据集ILSVRC15上离线训练而得,规避了对目标跟踪数据集过拟合的风险。长短时记忆层通过在线学习而得,充分利用了输入视频序列包含的时间相关性,具有良好的适应目标形态和动作变化的能力。速度显著提高,将一种可以适应目标变化的长短时记忆网络运用于目标跟踪。
-
-
-
-
-
-
-
-
-