-
公开(公告)号:CN111062446A
公开(公告)日:2020-04-24
申请号:CN201911355597.0
申请日:2019-12-25
Applicant: 南京大学
Abstract: 本发明涉及一种基于多源国土资源数据的土地类型分类方法,该方法借助第二次全国土壤普查、土地利用现状调查、地理国情普查、互联网数据等多源数据,融合地貌类型、土壤类型、土地利用类型、土地利用强度等反映土地资源综合特征的属性指标,构建了中尺度土地类型分类系统,并提出了集典型验证与分层验证等于一体的分类结果验证方法体系。本发明旨在提升土地类型研究的效率与实用性,实现土地资源综合信息的精准分类,服务国家国土资源调查、地理国情普查等重大战略应用需求。
-
公开(公告)号:CN103678705B
公开(公告)日:2016-07-13
申请号:CN201310745410.4
申请日:2013-12-30
Applicant: 南京大学
IPC: G06F17/30
Abstract: 本发明涉及一种VCT文件到shapefile文件的矢量数据并行转换方法,该方法首先分别构建VCT文件中文件头、要素类型参数、属性数据结构、注记、几何图形数据和属性数据的要素索引,并统计各图层的几何图形数据类型和包含的几何图形数据数量,并分别对相同几何图形数据类型的图层按照包含的几何图形数据数量进行排序,然后每个图层的点数据累加得到总点数据w,根据进程数p将VCT文件分为p个矢量目标子集,最后p个进程将从VCT文件中解析出的几何图形数据的坐标信息、属性数据与对应要素的图层进行匹配,并将每个图层的数据分别存入到一个单独的shapefile文件。该方法可以通过并行处理实现对矢量地理数据VCT文件的快速转换。
-
公开(公告)号:CN102938064B
公开(公告)日:2015-06-17
申请号:CN201210483627.8
申请日:2012-11-23
Applicant: 南京大学
IPC: G06K9/46
Abstract: 本发明涉及一种基于LiDAR数据与正射影像的停车场结构提取方法,该方法利用LiDAR数据将停车场分为空地区域和非空地区域,从LiDAR数据中生成非空地区域的车辆面片的中轴线,从正射影像数据中得到空地区域中的停车场车位线;套合非空地区域中的车辆中轴线和空地区域中的车位线,依其最大相交方向划分停车道;计算停车场结构参数,生成停车道的分割线,完成对停车场结构的提取。该方法能够解决停车场结构提取过程中面临的光照变化、阴影效应、透视变形以及车辆遮盖等问题,准确且高精度地提取停车场的结构。
-
公开(公告)号:CN102591709B
公开(公告)日:2014-03-12
申请号:CN201110441737.3
申请日:2011-12-27
Applicant: 南京大学
IPC: G06F9/46
Abstract: 本发明属于高性能地理计算领域,公开了基于OGR的shapefile文件主从式并行写方法。其步骤为:步骤1:输入命令行参数;步骤2:串行的方式创建shapefile目标数据源和图层文件,关闭目标数据源文件;步骤3:打开要处理的shapefile原文件,获取shapefile的各图层及其图形数据量;步骤4:MPI并行初始化,获取进程的编号和数量,并设定主从进程;步骤5:进行数据划分,确定每个从进程处理的shapefile文件中图形的起始FID和终止FID;步骤6:各从进程进入shapefile数据处理。本发明充分利用了计算资源,提高了shapefile文件处理的整体效率。
-
公开(公告)号:CN103324916A
公开(公告)日:2013-09-25
申请号:CN201310227705.2
申请日:2013-06-07
Applicant: 南京大学
IPC: G06K9/00
Abstract: 本发明涉及一种基于建筑轮廓的车载和航空LiDAR数据配准方法,该方法从车载和航空LiDAR数据中分别提取二维建筑轮廓,并通过轮廓线段高程分割法得到车载和航空三维建筑轮廓线段;然后分别从车载和航空三维建筑轮廓线段中选取两对轮廓线段,计算该两对三维轮廓线段的初始转换矩阵;然后对初始转换矩阵进行迭代运算,若车载三维轮廓线段和三维建筑轮廓线段中匹配线段的数量大于指定阈值或者匹配线段的数量最多,则所述初始转换矩阵定义为可靠转换矩阵,利用所述可靠转换矩阵完成车载LiDAR数据和航空LiDAR数据的配准。本发明能够实现车载和航空LiDAR数据的自动高精度配准,其配准精度可以达到分米级。
-
公开(公告)号:CN103236067A
公开(公告)日:2013-08-07
申请号:CN201310172271.0
申请日:2013-05-10
Applicant: 南京大学
Abstract: 本发明涉及一种像素级SAR影像时间序列构建的局部自适应配准方法,方法如下:数据预处理之后从主从影像上提取同名特征点对,使用最小二乘法计算二次多项式参数并计算匹配总体误差,然后比较匹配总体误差与给定阈值的大小,若匹配总体误差小于或等于给定阈值,则从影像与主影像的位置关系由上述二次多项式确定,最后进行影像配准;反之,若总误差大于给定阈值,则进行误差点聚类获取畸变区域,将主、从影像的正常区域作为一对新主从影像,畸变区域作为另一对新主从影像,对两对新的主、从影像重复计算二次多项式参数及以后的步骤,直至所有新主、从影像的同名特征点对匹配总体误差小于给定阈值,然后进行影像配准。
-
公开(公告)号:CN115100395B
公开(公告)日:2025-02-14
申请号:CN202210736883.7
申请日:2022-06-27
Applicant: 南京大学
IPC: G06V10/25 , G06V10/74 , G06V10/764 , G06V10/774 , G06V20/10
Abstract: 本发明公开一种融合POI预分类和图神经网络的城市街区功能分类方法,本分类方法包括以下步骤:S1、利用城市街区POI构建Delaunay三角网,S2、根据与每个POI点相连的Delaunay三角网边的平均边长,确定城市街区内POI的重要性排序,S3、选取城市街区内排名前三的POI类型,作为城市街区功能的组合标签,S4、对组合标签进行归并得到城市街区功能伪标签,S5、基于Delaunay三角网建立每个城市街区的POI图网络,S6、利用城市街区功能伪标签,训练图神经网络分类模型,S7、利用训练好的图神经网络分类模型进行城市街区功能分类。本发明方法能够提取POI数据的空间结构信息,丰富了POI数据的语义信息,从而提高城市街区功能分类的准确率。
-
公开(公告)号:CN115393704A
公开(公告)日:2022-11-25
申请号:CN202210695358.5
申请日:2022-06-20
Applicant: 南京大学
IPC: G06V20/10 , G06V10/26 , G06V10/54 , G06V10/764
Abstract: 本发明公开一种面向对象的稻虾田遥感自动化监测方法,本自动化监测方法包括以下步骤:S1、获取分析单元;S2、选取稻虾田样本;S3、判定分割对象是否为稻虾田和S4、得到检测结果。本发明基于对象单元实现了大范围的稻虾田监测,避免了基于像素分析中的“椒盐效应”等问题,提高了监测精度,具体实施中自动提取样本且无需人工调整参数,提高了监测的自动化程度。
-
公开(公告)号:CN103324916B
公开(公告)日:2016-09-14
申请号:CN201310227705.2
申请日:2013-06-07
Applicant: 南京大学
IPC: G06K9/00
Abstract: 本发明涉及一种基于建筑轮廓的车载和航空LiDAR数据配准方法,该方法从车载和航空LiDAR数据中分别提取二维建筑轮廓,并通过轮廓线段高程分割法得到车载和航空三维建筑轮廓线段;然后分别从车载和航空三维建筑轮廓线段中选取两对轮廓线段,计算该两对三维轮廓线段的初始转换矩阵;然后对初始转换矩阵进行迭代运算,若车载三维轮廓线段和三维建筑轮廓线段中匹配线段的数量大于指定阈值或者匹配线段的数量最多,则所述初始转换矩阵定义为可靠转换矩阵,利用所述可靠转换矩阵完成车载LiDAR数据和航空LiDAR数据的配准。本发明能够实现车载和航空LiDAR数据的自动高精度配准,其配准精度可以达到分米级。
-
公开(公告)号:CN103473734A
公开(公告)日:2013-12-25
申请号:CN201310421449.0
申请日:2013-09-16
Applicant: 南京大学
Abstract: 基于车载LiDAR数据的电力线提取与拟合方法,方法如下:首先利用体元划分车载LiDAR点云,确定各个体元内的点;然后根据真实电力线的分布特点剔除不含有电力线点云的体元;再将过滤得到的电力线点云依据电力线走廊进行划分,并利用AutoClust算法对电力线点云进行初始聚类;接着使用基于端部拟合线段的聚类合并方法,将属于同一电力线的初始点云聚类合并到一起;最后根据电力线的特性,恢复断裂的电力线,最终得到可用以表征单条电力线的点云,并以此进行三维拟合。本发明能够实现海量车载LiDAR数据中电力线点云的自动快速提取,实现了单条电力线的准确识别以及电力线三维模型的精确拟合。
-
-
-
-
-
-
-
-
-