-
公开(公告)号:CN117274374A
公开(公告)日:2023-12-22
申请号:CN202310798223.6
申请日:2023-06-30
Applicant: 北京空间飞行器总体设计部
IPC: G06T7/73 , G01C21/24 , G01C21/16 , G01C21/02 , G06T7/11 , G06T7/136 , G06T7/187 , G06T7/246 , G06V10/75
Abstract: 本发明空间暗弱目标自主导航的一种快速识别与高精度提取方法,包括:图像叠加;恒星识别;掩膜处理;构建匹配模板;卷积处理;分割阈值处理;连通域检测;提取目标区域和获得目标点位置。本发明在星敏感器性能有限条件下,实现了复杂空间背景下的空间暗弱目标快速识别与高精度提取。
-
公开(公告)号:CN116882045A
公开(公告)日:2023-10-13
申请号:CN202310669868.X
申请日:2023-06-07
Applicant: 北京空间飞行器总体设计部
IPC: G06F30/15 , G06F30/20 , G06F17/16 , G06F111/04
Abstract: 一种系统可观测度量化评估约束滤波方法,属于航天器自主运行技术领域。包括如下步骤:S1、建立航天器自主导航系统的动力学模型及观测模型;S2、给出系统Lie导数计算规则;S3、基于S2中所述的Lie导数构成可观测性矩阵;S4、基于S3中所述的可观测性矩阵,得到系统可观测度量化表征形式;S5、基于S4中所述的可观测度量化表征形式,给出基于可观测度量化评估的约束滤波方法。本发明状态更新约束形式通过系统可观测度量化评估获得,具有解析表达形式,计算复杂度较低,适合在航天器上进行,并确保了导航滤波状态更新满足动力学约束条件,导航滤波精度优于传统的最优滤波方法。
-
公开(公告)号:CN116817897A
公开(公告)日:2023-09-29
申请号:CN202310638619.4
申请日:2023-05-31
Applicant: 北京空间飞行器总体设计部
IPC: G01C21/16 , G06F18/25 , G06F30/20 , G01C11/00 , G06F111/08
Abstract: 本发明涉及自主光学导航的一种序列特征时空构建方法,属于航天器导航制导控制技术领域;建立未知环境中视觉辅助惯性导航的系统状态方程;从空间上选出视场中对导航精度贡献最大的未知陆标对应的图像特征;观测陆标,观测信息作为卡尔曼滤波器的输入,获得各状态变量的最优估计;以各状态变量的最优估计作为导航参数,进行着陆器的着陆导航;计算下一观测时刻;重新观测陆标,获得各状态变量的最优估计;以各状态变量的最优估计作为该时刻的导航参数进行着陆器的着陆导航;本发明通过求解使提出的深度误差模型最小的观测间隔时间,得到两次观测之间最优的观测间隔,能有效减少不必要的观测,大幅降低图像处理带来的计算负担。
-
公开(公告)号:CN114577205B
公开(公告)日:2023-06-06
申请号:CN202210126158.8
申请日:2022-02-10
Applicant: 北京空间飞行器总体设计部
Abstract: 一种基于序列图像的行星软着陆自主导航陆标优选方法,属于航天器导航制导控制技术领域,包括以下步骤:S1、着陆器进行着陆时采用视觉辅助惯性导航方法,建立视觉辅助惯性导航方法的离散时间的状态和观测误差方程;S2、根据S1建立的误差方程,判断离散时间系统可观测性矩阵的秩,分析保证可观测状态收敛条件下,陆标的最少观测次数;S3、构建可观测度指标模型;可观测度指标模型用于表征着陆器观测到陆标时对应着陆器位置的估计误差;S4、利用S2所述最少观测次数的结论及S3所述可观测度指标模型构建观测策略,指导着陆过程中自主切换陆标。
-
公开(公告)号:CN116576855B
公开(公告)日:2024-08-30
申请号:CN202310395444.9
申请日:2023-04-13
Applicant: 北京空间飞行器总体设计部
Abstract: 一种空间非合作目标自主导航的观测数据自主优选方法,包括:根据光学敏感器获得的一组光学序列图像,将图像中的条纹进行识别,获得属于同一目标的条纹信息,并计算每一个条纹的质心;根据条纹质心,采用自适应B样条基函数获得非合作目标在成像平面上的轨迹表示模型;根据非合作目标在成像平面上的轨迹表示模型和当前时间信息,得到当前时刻目标光学成像质心的预测值;将目标光学成像质心的预测值与条纹质心对比,若条纹质心无误,根据目标光学成像质心的预测值和条纹质心,融合自适应B样条基函数表示模型和图像测量信息,获得目标质心信息的提取结果;若条纹质心有误,依据目标光学成像质心的预测值,确定目标质心信息。
-
公开(公告)号:CN116882800B
公开(公告)日:2024-07-12
申请号:CN202310669867.5
申请日:2023-06-07
Applicant: 北京空间飞行器总体设计部
IPC: G06Q10/0639 , G01C21/24 , G06F17/18 , G06Q50/40
Abstract: 一种航天器自主导航系统可观测度指标体系构建方法,包括:建立航天器自主导航系统的动力学模型及观测模型;给出Lie导数计算规则;基于相对阶分析出影响系统可观测度的Lie导数最高阶次;计算从零阶至最高阶次的Lie导数;构成可观测性矩阵;基于可观测性矩阵得到反映系统是否完全可观测的完备性指标、反映系统在当前状态观测能力强弱的准确率指标、反映系统收敛速度的收敛率指标;形成航天器自主导航系统可观测度指标体系,并给出综合度量系统观测能力的量化指标表达式。本发明指标体系构建方法包括了反映观测能力的完备性指标、准确率指标和收敛率指标,在多维度上实现了系统观测能力解析量化评估,适合在计算资源严重受限的航天器上进行。
-
公开(公告)号:CN111881598B
公开(公告)日:2024-05-03
申请号:CN202010580435.3
申请日:2020-06-23
Applicant: 北京空间飞行器总体设计部
IPC: G06F30/23 , G06F111/04 , G06F119/14
Abstract: 本发明一种基于加速度谱的卫星及部组件界面力谱获取方法,(1)基于星箭耦合分析,获得卫星或部组件加速度的时域响应值;根据卫星或部组件加速度的时域响应值,通过冲击响应谱变换,得到卫星或部组件的加速度谱的幅值;(2)在星箭耦合模型上加载单位频域载荷进行频域响应分析,确定卫星或部组件界面的加速度的相位;(3)根据步骤(1)得到的卫星或部组件的加速度谱的幅值和步骤(2)得到的卫星或部组件界面的加速度的相位,获得带相位的界面加速度谱;根据带相位的界面加速度谱,获得带相位的界面加速度谱与界面力谱的对应关系;(4)根据步骤(3)带相位的界面加速度谱与界面力谱的对应关系,确定带相位的界面力谱,从而获得界面力谱的幅值,本发明提高了力谱确定的精度。
-
公开(公告)号:CN117029820A
公开(公告)日:2023-11-10
申请号:CN202310800334.6
申请日:2023-06-30
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明公开了一种空间非合作目标自主导航的序列图像最优构建方法,包括:构建基于光学相机安装偏置的相对导航系统模型;基于相对导航系统模型,进行状态估计误差几何特性分析,给出系统优化指标;根据系统优化指标,得到航天器姿态序列,进而确定最优序列图像。通过本发明实现了非合作目标近距离高精度自主相对导航。
-
公开(公告)号:CN116882800A
公开(公告)日:2023-10-13
申请号:CN202310669867.5
申请日:2023-06-07
Applicant: 北京空间飞行器总体设计部
Abstract: 一种航天器自主导航系统可观测度指标体系构建方法,包括:建立航天器自主导航系统的动力学模型及观测模型;给出Lie导数计算规则;基于相对阶分析出影响系统可观测度的Lie导数最高阶次;计算从零阶至最高阶次的Lie导数;构成可观测性矩阵;基于可观测性矩阵得到反映系统是否完全可观测的完备性指标、反映系统在当前状态观测能力强弱的准确率指标、反映系统收敛速度的收敛率指标;形成航天器自主导航系统可观测度指标体系,并给出综合度量系统观测能力的量化指标表达式。本发明指标体系构建方法包括了反映观测能力的完备性指标、准确率指标和收敛率指标,在多维度上实现了系统观测能力解析量化评估,适合在计算资源严重受限的航天器上进行。
-
公开(公告)号:CN116817898A
公开(公告)日:2023-09-29
申请号:CN202310638652.7
申请日:2023-05-31
Applicant: 北京空间飞行器总体设计部
IPC: G01C21/16 , G06F30/20 , G06F18/213 , G01C11/00 , G06F111/08
Abstract: 本发明涉及自主光学导航的一种软着陆图像序列间隔优化方法,属于航天器导航制导控制技术领域;建立未知环境中视觉辅助惯性导航系统状态方程;从视场中选择陆标;基于视觉辅助惯性导航系统状态方程建立卡尔曼滤波器;观测陆标,并将观测目标作为卡尔曼滤波器的输入,获得各状态变量的最优估计;将各状态变量的最优估计作为深度估计模型的输入,获得观测图像序列间隔及下一观测时刻;在下一观测时刻,重新观测陆标并结合视觉辅助惯性导航系统状态方程进行卡尔曼滤波处理,获得下一时刻各状态变量的最优估计;本发明可以自适应地调节观测间隔时间,使着陆器在对导航精度提升能力最强,能有效减少不必要的观测,大幅降低图像处理带来的计算负担。
-
-
-
-
-
-
-
-
-