一种高原预习服的低氧闭环干预系统

    公开(公告)号:CN115512849A

    公开(公告)日:2022-12-23

    申请号:CN202211121282.1

    申请日:2022-09-15

    Abstract: 本发明提供一种高原预习服的低氧闭环干预系统,属于急性高原病干预技术领域,该系统包括个体化预测模型学习模块、代价函数与约束设计模块及贝叶斯优化模块;个体化预测模型学习模块,内置有基于间歇性低氧下的血氧饱和度与输氧浓度之间的响应规律模型,用于对血氧饱和度进行预测;代价函数与约束设计模块,内置有代价函数和约束条件,所述代价函数为:基于所述血氧饱和度预测值构建以低氧刺激源关键因素为变量的代价函数,所述约束条件为:基于人体生理限制设置;贝叶斯优化模块,用于解算代价函数与约束设计模块中的约束优化,得到下一个IHT周期中理论最优的低氧刺激策略,以控制IHT的刺激源。

    一种基于贝叶斯优化的MDI剂量建议系统

    公开(公告)号:CN114464291B

    公开(公告)日:2022-11-25

    申请号:CN202111577847.2

    申请日:2021-12-22

    Abstract: 本发明公开一种基于贝叶斯优化的MDI剂量建议系统,包括指标计算模块、高斯过程学习模块和安全贝叶斯优化模块;指标计算模块将采集的某患者前一天24小时血糖进行记录并分段划分处理,并转化成能够描述血糖管理水平的非对称惩罚指标以及低血糖安全指标;高斯过程学习模块将指标结果和胰岛素剂量作为输入训练得到预测模型,利用预测模型得到剂量对应的预测结果;安全贝叶斯优化模块利用高斯过程学习模块预测得到的非对称惩罚指标预测模型的随机分布计算最大改善期望,并利用低血糖安全指标分布得到安全限制函数,将其作为风险惩罚因子加入改善期望,最后得到安全期望改善值;本发明利用多指标评价糖尿病患者血糖管理水平,逐步取得血糖的最优控制效果。

    一种比例积分型事件触发航天器姿态控制方法

    公开(公告)号:CN113608540B

    公开(公告)日:2022-07-05

    申请号:CN202110726476.3

    申请日:2021-06-29

    Abstract: 本发明公开了一种比例积分型事件触发航天器姿态控制方法,一、基于四元数的卫星姿态动力学与运动学模型,构建卫星姿态跟踪误差系统模型;二、根据卫星姿态跟踪误差系统模型,确定姿态跟踪误差系统扩张状态,设计扩张状态观测器;三、利用扩张状态观测器得到系统观测状态,设计基于系统观测状态的反馈控制器;四、基于反馈控制器输出信号的采样误差,设计比例积分型事件触发策略用于决定是否更新航天器姿态的控制信号;本发明能够对抗外部环境干扰与内部不确定性对航天器姿态的干扰,同时减少航天器姿态控制中不必要的信号传递,在节省有限的星上通信资源的同时保证姿态控制性能。

    一种用于AMS风险评估的数字仿真器

    公开(公告)号:CN113851224B

    公开(公告)日:2022-06-03

    申请号:CN202110693771.3

    申请日:2021-06-22

    Abstract: 本发明公开了一种用于AMS风险评估的数字仿真器,包括人群模拟模块、测量干扰模拟模块以及AMS风险评估模块;人群模拟模块通过应用人体低氧应激系统的数学模型以及多个实例实验数据,创建具备不同低氧耐受能力的模拟人群;测量干扰模拟模块用于模拟SpO2信息内的测量干扰与深呼吸生理干扰,并将模拟的干扰信号叠加到所模拟人群的SpO2生成曲线上;AMS风险评估模块获取用于评估AMS风险的指标,该指标设计基于所辨识模型的参数,用于表征不同虚拟人群的真实低氧适应能力;本发明能够为AMS风险评估算法研究获取更丰富的研究数据,并且实现有效可靠的AMS风险评估。

    一种比例积分型事件触发航天器姿态控制方法

    公开(公告)号:CN113608540A

    公开(公告)日:2021-11-05

    申请号:CN202110726476.3

    申请日:2021-06-29

    Abstract: 本发明公开了一种比例积分型事件触发航天器姿态控制方法,一、基于四元数的卫星姿态动力学与运动学模型,构建卫星姿态跟踪误差系统模型;二、根据卫星姿态跟踪误差系统模型,确定姿态跟踪误差系统扩张状态,设计扩张状态观测器;三、利用扩张状态观测器得到系统观测状态,设计基于系统观测状态的反馈控制器;四、基于反馈控制器输出信号的采样误差,设计比例积分型事件触发策略用于决定是否更新航天器姿态的控制信号;本发明能够对抗外部环境干扰与内部不确定性对航天器姿态的干扰,同时减少航天器姿态控制中不必要的信号传递,在节省有限的星上通信资源的同时保证姿态控制性能。

    一种电液复合式直线作动器

    公开(公告)号:CN104847750B

    公开(公告)日:2017-01-18

    申请号:CN201510116684.6

    申请日:2015-03-17

    Abstract: 本发明公开的一种电液复合式直线作动器,涉及一种推杆同时受到电机旋转驱动和液压直线驱动的高性能直线作动器,属于机电一体化技术领域。本发明包括电机、编码器、螺母、丝杠、推杆、内筒、外筒、液控口A和液控口B。所述的推杆同时受到电机旋转驱动和液压直线驱动,不仅兼具了液压缸和电动缸的技术优势,而且构成了具有冗余备份形式的驱动形式,大大提高了工作可靠性。本发明具有更好的控制性能、动力性能和能源利用率,控制形式灵活多样,通用性强,能够适应多种特殊或负载过大的工况。

    一种电液复合式直线作动器及其节能工作方法

    公开(公告)号:CN104847749A

    公开(公告)日:2015-08-19

    申请号:CN201510116566.5

    申请日:2015-03-17

    CPC classification number: F15B21/08 F15B15/14 F15B21/14 H02K7/10

    Abstract: 本发明公开的一种电液复合式直线作动器及其节能工作方法,涉及直线作动器及其节能工作方法,属于机电一体化技术领域。本发明包括编码器、电机、螺母、丝杠、推杆、内筒、外筒、液控口A、液控口B、控制阀A、控制阀B、无泄漏球阀A、无泄漏球阀B、无泄漏球阀C、无泄漏球阀D和回油油箱,具备电液复合式工作模式。本发明的优点在于实现了直线作动器负载口的独立控制,当所需的油液压力与负载的运动方向相反时,供油油路无需进行高压供油,只需低压补油即可,因此,节约能量,减少发热。此外,本发明通过带动电机发电,在提供所需的与负载运动方向相反的油液压力的同时,将多余的能量以电能的形式储存起来,节约能量。

    基于逐次变分模态分解和自适应滤波结合的血氧估计方法

    公开(公告)号:CN119770036A

    公开(公告)日:2025-04-08

    申请号:CN202411901354.3

    申请日:2024-12-23

    Abstract: 本发明属于生理状态估计技术领域,公开了基于逐次变分模态分解和自适应滤波结合的血氧估计方法,包括以下步骤:对于收集到的脉搏波信号去除高频噪声以及基线漂移;对脉搏波信号使用逐次变分模态分解和自适应滤波去除运动伪影;根据去噪后的脉搏波提取准确的峰值以及谷值;根据去噪后的脉搏波以及提取出的峰值和谷值,计算出R值,并根据R值求取血氧饱和度,其中R值是指红光和红外光在血液中的吸光度比值。本发明采用上述基于逐次变分模态分解和自适应滤波结合的血氧估计方法,实现去除光电容积脉搏波信号的运动伪影噪声的效果,使用多峰值联合检测并准确提取峰值和谷值,从而确定R值,得到血氧饱和度,大大提高估计血氧饱和度的精度。

    一种高原低氧环境损伤的高效调控系统及方法

    公开(公告)号:CN119626494A

    公开(公告)日:2025-03-14

    申请号:CN202411986898.4

    申请日:2024-12-31

    Abstract: 本发明公开了一种高原低氧环境损伤的高效调控系统及方法,涉及人体低氧损伤分析、检测与调控技术领域,包括数据监测模块、信号筛选模块、决策配氧模块和监控交互模块;利用数据监测模块实时获取与高原低氧适应能力相关的生理状态;利用信号筛选模块,基于测试数据,通过优化算法获取高建模价值的生理数据,构建生理状态的离散状态空间模型;利用决策配氧模块,通过预测控制算法确定配氧浓度决策,实现供氧调控;利用监控交互模块进行数据存储、记录与显示,并发布警报和预测危险情况。因此,采用上述方法,能够实现有效供氧、血氧动态监控与实时警报,保障位于高海拔地区等缺氧环境中个体的健康安全。

    一种融合情绪和运动信息的胰岛素剂量模糊控制方法

    公开(公告)号:CN119184684A

    公开(公告)日:2024-12-27

    申请号:CN202411332094.2

    申请日:2024-09-24

    Abstract: 本发明公开了一种融合情绪和运动信息的胰岛素剂量模糊控制方法,属于糖尿病胰岛素治疗技术领域,包括以下步骤:S1、估计情绪状态和运动强度;S2、计算当前胰岛素剂量;S3、确定模糊控制器的结构,定义以情绪状态和运动强度信息作为输入,胰岛素剂量调整步长作为输出的输入输出模糊分布,以及计算输入相对于不同模糊子集的隶属度;S4、建立模糊规则;S5、进行模糊逻辑推理,得到模糊系统的输出,将输出乘以步骤S2得到的胰岛素剂量确定最终的胰岛素剂量。本发明采用上述的一种融合情绪和运动信息的胰岛素剂量模糊控制方法,可实现更加个性化、动态化的胰岛素给药策略,并决策更加合理的胰岛素剂量,改善患者血糖管理效果。

Patent Agency Ranking