基于配置表的星载软件代码生成方法和装置

    公开(公告)号:CN117289915A

    公开(公告)日:2023-12-26

    申请号:CN202311576443.0

    申请日:2023-11-24

    Abstract: 本发明涉及数据打包技术领域,特别涉及一种基于配置表的星载软件代码生成方法和装置。其中,方法包括:定义每一种参数类型的打包函数宏和解包函数宏;针对每一个关键数据,均执行:基于打包和解包当前关键数据所需的解析协议,生成配置表;基于配置表中每一个参数对应的第一处理类型和处理该参数所需的第一表达式,来调用每一个参数对应的打包函数宏,以基于每一个参数的配置信息依次生成每一个参数的打包代码,以将当前关键数据打包为重要数据;当接收到解包指令时,基于配置表和各解包函数宏,依次生成每一个参数的解包代码。本方案,对不同协议的参数类型进行分类,通过配置表实现打包解包代码自动生成,大大提高了软件研制的效率和可靠性。

    姿控欠能力下的离轨制动控制方法、装置、设备及介质

    公开(公告)号:CN116902227A

    公开(公告)日:2023-10-20

    申请号:CN202311181141.3

    申请日:2023-09-14

    Abstract: 本发明涉及飞行器离轨制动技术领域,特别涉及一种姿控欠能力下的离轨制动控制方法、装置、设备及介质。方法包括:当飞行器处于姿控欠能力时,获取第一轨控发动机的开关机序列的开机占空比和单次开机时长;其中,第一轨控发动机为飞行器的两个轨控发动机中推力较大的轨控发动机,开机占空比为开关机序列的每一开关周期中开机时长占周期时长的比值;基于开关机序列的开机占空比和单次开机时长,使第一轨控发动机间歇开机进行离轨制动;直至满足预先设置的停止制动条件时,控制第一轨控发动机关机,完成飞行器的离轨制动。本方案可以通过使第一轨控发动机间歇开机,来实现姿控欠能力下的高精度离轨制动,保证飞行器到达再入点的精度。

    空间飞行器非合作交会半物理闭环试验系统和方法

    公开(公告)号:CN117908399A

    公开(公告)日:2024-04-19

    申请号:CN202311708638.6

    申请日:2023-12-12

    Abstract: 本发明涉及航天控制技术领域,尤其涉及一种空间飞行器非合作交会半物理闭环试验系统和方法。系统包括:主控计算机、非合作敏感器、目标飞行器模拟器、GNC控制器、便携式设备、第一转台、第二转台、转台计算机和显示存储计算机;非合作敏感器安装在第一转台上,目标飞行器模拟器安装在第二转台上;主控计算机用于向便携式设备发送遥控指令;非合作敏感器用于生成测量数据;GNC控制器用于对测量数据进行处理,并将处理结果发送至便携式设备;便携式设备模拟飞行器设备与GNC控制器进行信息交互与控制;第一转台和第二转台运动分别模拟追踪飞行器和目标飞行器的在轨相对运行状态。本方案可以完成系统级和飞行任务级的试验验证,真实性高。

    剔野阈值确定方法、装置、电子设备及存储介质

    公开(公告)号:CN117130024B

    公开(公告)日:2024-01-09

    申请号:CN202311392813.5

    申请日:2023-10-25

    Abstract: 本发明提供了一种剔野阈值确定方法、装置、电子设备及存储介质,涉及航天器控制技术领域,其中方法包括:确定跨空域飞行期间飞行器的GNSS导航是否从失效状态切换为有效状态;若是,则确定最近一次GNSS导航失效时对应的失效时长,并根据该失效时长确定GNSS导航当前有效阶段内的剔野阈值;其中,该剔野阈值与该失效时长成正相关关系。本方案,能够动态调整GNSS导航的测量值有效性的判断门限,保证导航系统对GNSS导航的测量值尽可能不误判、对野值不漏判,提高了导航系统的可靠性。

    考虑回归轨道相位约束的一体化降轨调相方法和装置

    公开(公告)号:CN117104537B

    公开(公告)日:2023-12-29

    申请号:CN202311386713.1

    申请日:2023-10-25

    Abstract: 本发明涉及航空航天技术领域,特别涉及一种考虑回归轨道相位约束的一体化降轨调相方法和装置。包括:基于霍曼变轨公式、当前任务轨道和回归轨道的轨道信息,确定使飞行器从当前任务轨道降至回归轨道的两次变轨的脉冲增量;基于当前任务轨道和回归轨道的轨道信息,分别确定当前任务轨道和回归轨道的升交点地理经度一圈的变化量;基于回归轨道的相位约束、当前任务轨道和回归轨道的升交点地理经度一圈的变化量以及两次变轨的脉冲增量,分别确定两次变轨的脉冲开机时间,以在脉冲开机时间执行对应脉冲增量的轨控,实现飞行器的一体化降轨调相任务。本方案可以在实现降轨的同时,满足回归轨道的相位约束,避免了额外燃料消耗和时间的浪费。

    高频率GNC系统多任务执行策略的确定方法及装置

    公开(公告)号:CN117234696A

    公开(公告)日:2023-12-15

    申请号:CN202311502879.5

    申请日:2023-11-13

    Abstract: 本发明涉及航天器控制技术领域,特别涉及一种高频率GNC系统多任务执行策略的确定方法及装置。方法包括:基于各任务的实际运行频率确定多个执行周期;各执行周期的间隔周期呈倍数关系,每个执行周期均为控制周期的正整数倍;针对每个任务,均基于该任务的运行频率确定其所属的执行周期;对属于最小执行周期的任务,每个控制周期执行一次;对属于非最小执行周期的任务,判断该任务的运行时长是否大于预设时长;若是,则基于该任务的执行周期将其划分为多个子任务,并将各个子任务分布在执行周期内的不同控制周期执行;若否,则在该任务的执行周期内选择一个控制周期执行。本发明可以提高计算机的执行效率,满足GNC系统对高频率控制的要求。

    考虑回归轨道相位约束的一体化降轨调相方法和装置

    公开(公告)号:CN117104537A

    公开(公告)日:2023-11-24

    申请号:CN202311386713.1

    申请日:2023-10-25

    Abstract: 本发明涉及航空航天技术领域,特别涉及一种考虑回归轨道相位约束的一体化降轨调相方法和装置。包括:基于霍曼变轨公式、当前任务轨道和回归轨道的轨道信息,确定使飞行器从当前任务轨道降至回归轨道的两次变轨的脉冲增量;基于当前任务轨道和回归轨道的轨道信息,分别确定当前任务轨道和回归轨道的升交点地理经度一圈的变化量;基于回归轨道的相位约束、当前任务轨道和回归轨道的升交点地理经度一圈的变化量以及两次变轨的脉冲增量,分别确定两次变轨的脉冲开机时间,以在脉冲开机时间执行对应脉冲增量的轨控,实现飞行器的一体化降轨调相任务。本方案可以在实现降轨的同时,满足回归轨道的相位约束,避免了额外燃料消耗和时间的浪费。

    航天器自主闭环轨控方法及装置

    公开(公告)号:CN117087875A

    公开(公告)日:2023-11-21

    申请号:CN202311359312.7

    申请日:2023-10-20

    Abstract: 本发明提供了一种航天器自主闭环轨控方法及装置,涉及航天器控制领域,方法包括:在接收到自主轨控指令时,根据目标轨道根数和当前轨道根数确定首脉冲轨控后过渡轨道的相关参数,并通过过渡轨道相关参数规划双脉冲的点火位置和轨控速度增量,在执行首脉冲时采用闭环执行方式,根据实时计算确定过渡轨道到位时将轨控发动机关机以完成首脉冲,在执行次脉冲时依然采用闭环执行方式,根据实时计算确定目标轨道到位时将轨控发动机关机以完成次脉冲。本方案,能够根据实时的自主定轨结果判断的轨道到位情况来确定轨控发动机的关机节点,从而可以使得轨控结果具有极高的精度。

    基于半物理试验系统的非合作交会敏感器视场调整方法

    公开(公告)号:CN117706959A

    公开(公告)日:2024-03-15

    申请号:CN202311708032.2

    申请日:2023-12-12

    Abstract: 本发明涉及航天控制技术领域,特别涉及一种基于半物理试验系统的非合作交会敏感器视场调整方法。方法包括:利用预先构建的半物理试验系统确定非合作交会敏感器的真实性能,真实性能包括动态性能和边界性能;基于非合作交会敏感器的真实性能确定其交接班位置;交接班位置为由中远距相对导航敏感器捕获目标飞行器切换为由非合作交会敏感器捕获目标飞行器的位置,且交接班位置小于非合作交会敏感器的真实测量作用距离;基于交接班位置,利用预先确定的视场调整策略调整非合作交会敏感器的视场,以捕获目标飞行器;视场调整策略是利用半物理试验系统验证过的。本申请可以准确调整敏感器视场,实现在轨非合作交会捕获。

    基于中间停泊点的非合作类接近控制方法及装置

    公开(公告)号:CN117193380B

    公开(公告)日:2024-02-20

    申请号:CN202311443187.8

    申请日:2023-11-02

    Abstract: 本发明提供了一种基于中间停泊点的非合作类接近控制方法及装置,涉及航天器控制技术领域,方法包括:针对非合作类接近任务中相对测量敏感器难以保证连续稳定有效测量的情况下,通过确定仅仅以惯性测量敏感器的导航结果进行递推时惯性导航递推误差与递推时间的关系,以在初始点至目标终点的转移过程中设计中间停泊点,使得中间停泊点能够保证两个航天器的安全性,同时又能够保证相对测量敏感器的视场可见性,进一步控制追踪航天器在中间停泊点等待相对测量敏感器有效且相对导航重新收敛,以进行后续追踪。可见,本方案,能够在相对测量敏感器无法稳定有效测量的情况下,保证非合作类接近任务的安全可靠。

Patent Agency Ranking