一种RGB-D图像显著性目标获取的方法

    公开(公告)号:CN111242238B

    公开(公告)日:2023-12-26

    申请号:CN202010070635.4

    申请日:2020-01-21

    Abstract: 本发明提供一种RGB‑D图像显著性目标获取的方法,提出一种交织融合网络,用于相互指导RGB‑D特征的联合提取,并通过网络浅层和深层结构密集地整合跨模态的互补信息,这样能自动且充分地抓取潜在的有用信息,并减少由于跨模态数据的不一致性引起的干扰。与单独提取RGB‑D特征后将其整合方式相比,RGB‑D特征的交互引导有利于促进跨模态信息的互补性融合,缓解不同模态中的不一致问题;还可以降低因为成像环境或设备引起的低质深度图带来的负面影响。通过在损失函数构造时引入对抗损失项,为RGB‑D显著性目标检测提供全局语义约束,使检测结果不仅关注像素级显著性属性,还能捕获对象级的全局语义特征,生成具有完整结构、清晰边界的显著性图。

    一种RGB-D图像显著性目标检测方法

    公开(公告)号:CN111583173B

    公开(公告)日:2023-12-01

    申请号:CN202010199264.X

    申请日:2020-03-20

    Abstract: 本发明涉及一种RGB‑D图像显著性目标检测方法,包括如下步骤:1、从VGG主干网络中提取自顶向下的RGB‑D特征,然后将RGB‑D特征送入跟每个层级相对应的跨模态调制与选择单元;2、通过跨模态特征调制模块对多级RGB‑D特征进行调制;3、通过自适应特征选择模块得到与显著性相关的特征;通过显著显著性边缘预测部分生成显著性边缘图;4、求得修正特征;5、利用修正特征通过显著性图预测部分进行显著性图预测,并以第1层级输出的显著性图作为网络的最终输出显著性结果。本发明能够充分挖掘跨模态数据之间的互补信息,获得更具判别力的特征表达,生成更加完整、准确、边缘清晰的显著性图,且具有较强的背景抑制能力。

    一种协同显著性目标检测方法

    公开(公告)号:CN112348033A

    公开(公告)日:2021-02-09

    申请号:CN202011100360.0

    申请日:2020-10-15

    Abstract: 本发明涉及一种协同显著性目标检测方法,具体包括如下步骤:给定一个包含N幅相关图像的图像组;步骤2:使用共享的骨干特征提取器来获取深层特征;步骤3:通过在线的图内显著性引导模块生成图内显著性特征;步骤4:采用集成‑分发结构聚合群组语义特征并自适应地将其分配给不同的个体,以实现协同显著性特征学习;步骤5:将低分辨率的协同显著性特征送入群组一致性保持解码器和协同显著性预测头部件来一致性地突出协同显著性目标并生成全分辨率的协同显著性图。通过本发明提供方法能够生成更加准确、完整的协同显著性图,且能够有效抑制无关干扰的影响,图间一致性保持好。

    一种RGB-D图像显著性目标检测方法

    公开(公告)号:CN113763422B

    公开(公告)日:2023-10-03

    申请号:CN202110872457.1

    申请日:2021-07-30

    Abstract: 本发明属于图像目标检测技术领域,涉及一种RGB‑D图像显著性目标检测方法,包括:将深度图和RGB图像分别输入深度模态编码器和RGB图像编码器;深度模态编码器提供深度模态,RGB图像编码器提供RGB模态;在低层级特征编码阶段,RGB诱导细节增强模块通过将RGB模态的细节补充信息从RGB模态传输到深度模态,实现深度特征增强;在高层级特征编码阶段,深度诱导语义增强模块进行跨模态特征融合;通过密集解码重建结构生成预测的显著性图像。本发明提出一种新跨模态交互模式和跨模态差异交互网络,模拟两种模态的依赖性,并设计组件实现差异化跨模态引导,提出DDR结构,利用多个高层级特征更新跳连接生成语义块。

    一种基于多投影表征的全景图像显著性目标检测方法

    公开(公告)号:CN115424100A

    公开(公告)日:2022-12-02

    申请号:CN202210865756.7

    申请日:2022-07-22

    Abstract: 本发明涉及一种基于多投影表征的全景图像显著性目标检测方法,构建一个编码器‑解码器结构的端到端检测网络,将等矩形投影图像和相应的四个立方体展开图像共同作为检测网络的输入;在编码器阶段,等矩形投影分支和立方体展开分支通过共享参数的五十层深度残差网络ResNet‑50提取特征;在解码器阶段,动态加权融合模块自适应地融合等矩形投影特征和四种立方体展开特征,过滤与细化模块结合编码与解码特征,得到最终的显著性图。本发明,检测网络结合等矩形投影与立方体展开两种全景图像的表征方式,将等矩形投影图像和相应的四个立方体展开图像作为共同输入,其中,立方体展开图像为等矩形投影图像提供补充信息,确保目标的完整性。

    基于跨模态交互和修正的RGB-D图像显著性目标检测方法

    公开(公告)号:CN115170830A

    公开(公告)日:2022-10-11

    申请号:CN202210580255.4

    申请日:2022-05-26

    Abstract: 本发明涉及一种基于跨模态交互和修正的RGB‑D图像显著性目标检测方法,包括:1、在编码阶段,彩色图编码器和深度图编码器分别提取彩色图模态和深度图模态的特征,彩色图模态和深度图模态的高层特征经渐进式注意力引导整合单元进行跨模态交互得到RGB‑D特征;2、特征修正中间件结构对编码阶段得到的彩色图模态、深度图模态和RGB‑D模态的特征进行自模态和跨模态的修正;3、在解码阶段,彩色图模态和深度图模态分别解码,并将各层级解码特征送入重要性门控融合单元进行融合解码,从而完成RGB‑D模态的解码,得到最终的显著图。本发明分别在不同阶段对特征进行交互和修正,实现两种模态更加全面的融合以及对互补信息的提取。

Patent Agency Ranking