-
公开(公告)号:CN111242238B
公开(公告)日:2023-12-26
申请号:CN202010070635.4
申请日:2020-01-21
Applicant: 北京交通大学
IPC: G06V10/80
Abstract: 本发明提供一种RGB‑D图像显著性目标获取的方法,提出一种交织融合网络,用于相互指导RGB‑D特征的联合提取,并通过网络浅层和深层结构密集地整合跨模态的互补信息,这样能自动且充分地抓取潜在的有用信息,并减少由于跨模态数据的不一致性引起的干扰。与单独提取RGB‑D特征后将其整合方式相比,RGB‑D特征的交互引导有利于促进跨模态信息的互补性融合,缓解不同模态中的不一致问题;还可以降低因为成像环境或设备引起的低质深度图带来的负面影响。通过在损失函数构造时引入对抗损失项,为RGB‑D显著性目标检测提供全局语义约束,使检测结果不仅关注像素级显著性属性,还能捕获对象级的全局语义特征,生成具有完整结构、清晰边界的显著性图。
-
公开(公告)号:CN111242238A
公开(公告)日:2020-06-05
申请号:CN202010070635.4
申请日:2020-01-21
Applicant: 北京交通大学
IPC: G06K9/62
Abstract: 本发明提供一种RGB-D图像显著性目标获取的方法,提出一种交织融合网络,用于相互指导RGB-D特征的联合提取,并通过网络浅层和深层结构密集地整合跨模态的互补信息,这样能自动且充分地抓取潜在的有用信息,并减少由于跨模态数据的不一致性引起的干扰。与单独提取RGB-D特征后将其整合方式相比,RGB-D特征的交互引导有利于促进跨模态信息的互补性融合,缓解不同模态中的不一致问题;还可以降低因为成像环境或设备引起的低质深度图带来的负面影响。通过在损失函数构造时引入对抗损失项,为RGB-D显著性目标检测提供全局语义约束,使检测结果不仅关注像素级显著性属性,还能捕获对象级的全局语义特征,生成具有完整结构、清晰边界的显著性图。
-