-
公开(公告)号:CN112132761B
公开(公告)日:2023-07-14
申请号:CN202010972204.7
申请日:2020-09-16
Applicant: 厦门大学
IPC: G06T5/00
Abstract: 一种基于循环上下文聚合网络的单图像去雾方法,涉及计算机视觉技术。步骤:A.准备训练样本集(xi,yi),i=1,……,N,N为训练样本数,N为自然数。xi表示训练样本对应的固定大小的图像。yi表示训练样本xi对应的真实图像;B.预处理训练样本集;C.设计循环上下文聚合网络结构;D.设计上下文聚合块;E.在循环上下文聚合网络里,采用循环跳跃连接,避免训练中出现梯度爆炸或者梯度消失问题,加速循环网络的训练。建立深度网络框架,包括编码模块、循环模块、解码模块;可有效进行单图像去雾,通过算法分析,不仅大大提高了去雾的性能,而且还保存着图像的纹理和细节,在视觉上也取得最好的效果。
-
公开(公告)号:CN111666948B
公开(公告)日:2023-05-30
申请号:CN202010458635.1
申请日:2020-05-27
Applicant: 厦门大学
IPC: G06V10/26 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/084
-
公开(公告)号:CN112966581B
公开(公告)日:2022-05-27
申请号:CN202110213113.X
申请日:2021-02-25
Applicant: 厦门大学
IPC: G06V20/40 , G06V10/46 , G06V10/764 , G06V10/774 , G06K9/62
Abstract: 一种基于内外语义聚合的视频目标检测方法,涉及计算机视觉技术。包括步骤:A.准备训练样本集,依次包括当前帧、支持帧,首先在当前序列随机选取一帧作为当前帧,再在当前帧附近随机选取几帧作为支持帧,为当前帧的训练提供丰富的时空信息。B.预处理训练样本集,对当前帧,支持帧进行随机翻转、裁剪等操作,进一步增大训练样本多样性。C.在每帧内进行内部语义聚合,实现单个帧自身的空间语义增强。D.联合三帧进行外部语义聚合,实现三帧时空信息的语义增强。E.对经过内外语义聚合的当前帧特征进行分类和回归,得到最后的检测结果,包括检测框和预测所属类别。可以有效地聚合视频中的时空语义信息,从而有效地提高目标检测器的性能。
-
公开(公告)号:CN113903053A
公开(公告)日:2022-01-07
申请号:CN202111129224.9
申请日:2021-09-26
Applicant: 厦门大学
Abstract: 基于统一中间模态的跨模态行人重识别方法,涉及计算机视觉技术领域。包括以下步骤:1)将两种模态图像分别输入到两个编码器中进行编码;2)将编码得到的两种特征输入到两个非线性激活函数中用于加深其非线性表达能力;3)将非线性激活后的两种特征输入到一个共享的解码器中,并解码到一个统一的中间图像空间中,得到中间模态图像;4)将得到的中间模态图像与原始图像一起输入到网络中进行优化,完成跨模态行人重识别。可降低模态差异,进一步地拉近两种中间模态图像之间的距离,提升跨模态行人重识别模型的性能。
-
公开(公告)号:CN108960127B
公开(公告)日:2021-11-05
申请号:CN201810696880.9
申请日:2018-06-29
Applicant: 厦门大学
Abstract: 基于自适应深度度量学习的遮挡行人重识别方法,涉及计算机视觉技术。首先设计对遮挡鲁棒的卷积神经网络结构,在网络中先提取行人图像的中低层语义特征;然后提取对遮挡鲁棒的局部特征,并联合全局特征,再学习高层语义特征,并且使用自适应近邻的深度度量损失学习对于行人身份变化足够具有判别力的特征,并联合使用分类损失,快速稳定地完成整个网络的更新学习;最后根据训练好的网络模型,对测试图像提取第一个全连接层的输出作为特征表示,并完成后续的特征相似度比较和排序,得到最后的行人重识别结果。有效地提高特征对遮挡的鲁棒性。
-
公开(公告)号:CN109948573B
公开(公告)日:2021-08-17
申请号:CN201910236935.2
申请日:2019-03-27
Applicant: 厦门大学
Abstract: 一种基于级联深度卷积神经网络的噪声鲁棒人脸识别方法,涉及计算机视觉技术。首先设计去噪子网络和人脸识别子网络,在去噪子网络中,利用密集连接的方法,将网络前6层中各层产生的特征图由前往后进行逐层连接,以充分利用浅层网络产生的人脸特征。在人脸识别子网络中采用残差网络结构,利用恒等映射的方法对网络不同层之间进行捷径连接,可有效减少深层网络结构中出现的梯度消失现象。然后采用级联的方法,将去噪子网络和人脸识别子网络进行联合训练,获得噪声鲁棒的人脸表征,并设计了一个联合损失函数用于两个子网络的权值更新。最后根据训练好的网络模型,得到最终的噪声人脸识别结果。
-
公开(公告)号:CN111914110A
公开(公告)日:2020-11-10
申请号:CN202010745156.8
申请日:2020-07-29
Applicant: 厦门大学
IPC: G06F16/532 , G06F16/55 , G06N3/04 , G06N3/08
Abstract: 一种基于深度激活显著区域的实例检索方法,涉及视觉实例检索。1)模型设计:模型包括前向传播模块、模式定位模块和特征提取模块;2)对于给定的图像数据库,数据库中每张图片都作为模型的输入,提取输出的实例定位结果和对应的实例级特征;3)对于每个查询图片,将其作为深度模式挖掘模块的前向传播部分的输入,进行区域性实例特征的提取,将该实例特征与模型在数据库图片上提取出的所有实例级特征进行相似度对比,每张数据库图片中相似度最高区域即为该图上实例检索的结果,该区域对应的相似度即为这张图片的相似度,数据库所有图片按照相似度从高到低依次排列,得到整个数据库的实例检索的结果。可应用于视频媒体的智能化检索、视频编辑。
-
公开(公告)号:CN111913849A
公开(公告)日:2020-11-10
申请号:CN202010746722.7
申请日:2020-07-29
Applicant: 厦门大学
Abstract: 一种用于运维数据的无监督异常检测和鲁棒趋势预测方法,涉及计算机系统异常检测技术和趋势预测技术。1)模型设计:变分自编码器作为异常检测模块,为模型的前半部分;长短时记忆网络作为趋势预测模块,为模型的后半部分;2)原始运维时序数据经历数据补全,归一化处理,以及采用滑动窗口将数据分割成固定长度的时序段输入到模型;3)采用变分自编码器重构输入的时序段,从而分离出异常点,达到异常检测的目的;4)将自编码器重构的时序段输入到趋势预测模块,预测下一时刻的状态值。减少时间序列中原有的异常和噪声对长短时记忆网络的影响,提高长短时记忆网络的鲁棒性;提高性能的同时又减少性能在不同数据之间的波动。
-
公开(公告)号:CN109697726B
公开(公告)日:2020-09-18
申请号:CN201910018068.5
申请日:2019-01-09
Applicant: 厦门大学
Abstract: 一种基于事件相机的端对端目标运动估计方法,涉及计算机视觉的目标运动估计。针对传统相机对目标快速运动和环境光照变化不鲁棒的缺点,提出一种基于事件相机的端对端目标帧间运动估计深度人工神经网络。由于事件相机仅产生异步的视觉事件,而所提出的深度网络需要同步的图像帧用于输入,还提出一种异步视觉事件集到同步图像帧表示的转换。该视觉事件帧能够清晰地展现所对应运动的模式,便于所提出的深度网络对这些模式的提取和识别。所提出的深度网络包含三个主要部分:开始的卷积模块用于提取视觉事件帧上的运动特征、中间的长短时记忆模块用于加速训练与压缩特征和最后的全连接层部分用于实时地预测5自由度的目标二维帧间运动。
-
公开(公告)号:CN107123119B
公开(公告)日:2019-12-17
申请号:CN201710287180.X
申请日:2017-04-27
Applicant: 厦门大学
Abstract: 一种针对多结构数据的指导性采样方法,涉及计算机视觉技术。1)准备输入数据;2)如果当前总采样次数c小于M,那么执行步骤3)~7);否则,结束采样且输出模型假设集Θ;3)如果当前总采样次数c小于b,那么使用随机采样方法采样一个数据子集S;否则使用提出的指导性采样方法采样一个数据子集S;4)使用采样到的数据子集S估计一个模型假设θ;5)对每一个xi∈χ,计算xi与θ的绝对残差到;6)如果当前总采样次数c大于等于b且c是b的整数倍,那么更新窗口大小w且排序得到残差索引的重排列7)把模型假设添加到模型假设集中。
-
-
-
-
-
-
-
-
-