一种基于深度学习的实时高性能街景图像语义分割方法

    公开(公告)号:CN110188817A

    公开(公告)日:2019-08-30

    申请号:CN201910452356.1

    申请日:2019-05-28

    Applicant: 厦门大学

    Abstract: 一种基于深度学习的实时高性能街景图像语义分割方法。准备街景图像训练、验证和测试数据集;对数据集图像进行下采样,减小图像的分辨率;对现有的轻量级分类网络进行改造作为语义分割的基础特征提取网络;在基础特征提取网络后串联一个鉴别性孔洞空间金字塔池化用于解决语义分割的多尺度问题;将若干个卷积层堆叠,形成浅层的空间信息保存网络;使用特征融合网络将得到的特征图进行融合形成预测结果;将输出图像与数据集中的语义标注图像进行对比,利用反向传播算法进行端到端的训练,得到实时高性能街景图像语义分割网络模型;将待测试的街景图像输入实时高性能街景图像语义分割网络模型中得到街景图像的语义分割结果。

    一种基于多路聚合的实时高性能语义分割方法和装置

    公开(公告)号:CN111666948A

    公开(公告)日:2020-09-15

    申请号:CN202010458635.1

    申请日:2020-05-27

    Applicant: 厦门大学

    Abstract: 一种基于多路聚合的实时高性能语义分割方法和装置,所述方法包括:准备语义分割图像训练集和测试数据集;对数据集图像进行下采样;将现有的轻量级分类网络改造为语义分割的基础特征提取网络;将基础特征提取网络所提取的特征图按大小分为4个尺度,取较小的三个尺度的特征图输入到不同分支路径中进行处理以构成多路网络;并用全局上下文模块处理最小尺度的特征图;利用特征变换模块对特征图进行变换,并按尺度的从低至高逐级聚合前两个步骤中得到的特征图形成预测结果;将预测结果与训练集提供的像素级标注图像进行对比,并使用反向传播算法进行训练以得到实时高性能语义分割网络模型;把测试数据集的图像输入至训练好的模型中得到分割结果。

    一种基于深度学习的实时高性能街景图像语义分割方法

    公开(公告)号:CN110188817B

    公开(公告)日:2021-02-26

    申请号:CN201910452356.1

    申请日:2019-05-28

    Applicant: 厦门大学

    Abstract: 一种基于深度学习的实时高性能街景图像语义分割方法。准备街景图像训练、验证和测试数据集;对数据集图像进行下采样,减小图像的分辨率;对现有的轻量级分类网络进行改造作为语义分割的基础特征提取网络;在基础特征提取网络后串联一个鉴别性孔洞空间金字塔池化用于解决语义分割的多尺度问题;将若干个卷积层堆叠,形成浅层的空间信息保存网络;使用特征融合网络将得到的特征图进行融合形成预测结果;将输出图像与数据集中的语义标注图像进行对比,利用反向传播算法进行端到端的训练,得到实时高性能街景图像语义分割网络模型;将待测试的街景图像输入实时高性能街景图像语义分割网络模型中得到街景图像的语义分割结果。

Patent Agency Ranking